1..JJupin DOCUMENTALION oot e e e et e e e e e 3

1.1 INrOdUCTION . . . e e e 5
1.1.1What's new in JJUPIN 3.0 e 5
1.2 REQUINEIMENTS . . o ittt et e e et e e e e e e e e e e e e e e e e 6
1.3 Installation & CONfiQUIAtioN e e e 6
131 Installation 6
1.3.1.1 Installation via Atlassian Universal Plugin Managerttt 7
1.3. 1.2 Manual Install ... 7
1.3.1.3 Installing @ NeW LiCENSE e 7
1.3.21Install NOtes fOr JIRA 7 oo 7
1.3.2.1 What should | do if | installed an incompatible version? 7
1.3.3 AdMINISLration Pageo 8
1.3.3. 1 Advanced Configot e 9
1.3.3.1.1 SMS Provider Configuration 9
1.3.3.2 SIL MABNAGET . o ottt et e e 10
1.3.3.3 SIL Services & Scheduler 11
1.3.3.4 SIL LIStBNer . .o 15
1.3.3.5 SIL Custom Field DeSCHPIOISottt et e e e e e e e 16
1.3.3.6 Live Fields Configurationt e e 18
1.3.4 SIL Configurationo e 21
1.3.5 Mail Configuration 22
1.3.6 REMOtE SY S OIS . . . oottt e e 23
1.3.6.1 REST ReMOte SYSIEIMS . ..ottt e et et e e e e e 23
1.3.7 SQL Configurationo e 24
1.3.8 LDAP Configurationttt e e 25
1.3.9 Configuring @ SIL JIRA SEIVICEot e e e e e e 25
1.3.10 Configure JIRA LOGOING . . . oottt e e et e e e e e e e e e e 27
1.3 AL LICENSING . o ottt et e e e e e e e e e 27
1.3.22UNINStall .. 29
1.3.12.1 Manual Uninstall 29
1.3.12.2 Uninstall via Atlassian Universal Plugin Managerttt 30
LA USEr QUILE oottt e e e 32
1.4.1 Writing Validators, Postfunctions and Conditions i 32
142 Transition VIEWo 37
LABWOrKIIOW VIEBW . . o e 42
14,4 WOrKIIOW ViBWET . . e 42
1.4.5 SIL RUNNEEN GAAGEL oottt e e e e e e e e e e e e e e e e e 44
1.4.5.1 Parameters in SIL RUNNEer Gadgetttt e e 48
146 Live FlelOs ... 51
1.4.6.1 How 'Live Fields' Work 51
1.4.6.2 Supported fields and graphic elements 57
1.4.6.3 AcCessiNg the CUITENt SCrEENt e e e e e e 61
L1.4.6.4 ROULINES . .ot e e 63
1.4.6.4.1 IfAIIOWSEIECIOPLIONSot e e 64
1.4.6.4.2 IfDIAlOgMESSA0Ettt i e 64
1.4.6.4.3 1DISAblE 65
14.6.4.410DisableTab 66
1.4.6. 4.5 ENADIe 67
1.4.6.4.6 fEnableTab 68
1.4.6.4.7 TEXECUIBIS 68
1.4.6.4.8 IfGlobalMeSSageot 69
1.4.6.4.9 ITHIde 70
1.4.6.4.20 IfHIAEAIIEXCEPL . . o .ottt e e e e e e e e e 71
1.4.6.4.11 IfHIdeFIieldMeSSaget e 73
1.4.6.4. 02 fHIdETabo 73
1.4.6.4.13 IfInstantHOOK o 74
1.4.6.4.14 fRedIreCt 75
1.4.6.4.15 fRefreShSCreen 76
1.4.6.4.16 IfReStrictSelectOPtiONSo ot 77
146,407 SOt .o 77
14.6.4. 08 fSNOW . .o 79
1.4.6.4.00 TSNOWAIL .o 80
1.4.6.4.20 IfSHOWFIEIAMESSAGE oottt e e e e e e 81
1.4.6.4. 21 fShOWTaD . ..o 82
1.4.6.4.22 ITWALCNo 83
1.4.7 Additional ROULINES o e e 84
LA 7. L TUNNEILOG . .ttt et e et e e e e e e e e 85
L DBV OPMENT . . .o e 86
1.5.1 SIL Programming WarNiNGS« ottt et ettt e e e et e e e e 88
1.5.2 Calling SIL Scripts from Remote SysStemsS 90
1.6 Additional DOCUMENTALION e e e 93

1.7 Known problems (and their resolUtiOnS)ot e 93

1.8 Previous versions doCUMENTAtioNottt e e et e e 94
1.9 LICENSE & PriCING . . oottt e e e e 94
L. L0 COMACE . .ottt e e e 94
1.121 BaCKUP @Nnd FESIOME ottt ittt e e e e e e e e e e 94

JJupin Documentation

<
Y
» reduces the time of implementation by more than 50%

> consistent over Jira versions

> simple, intuitive, Java like syntax

» easy to express ideas, instead of concentrating
on Jira internals

SIAA wroore - -vew . CTHTH Bl

sdminkirallzn o e

T

Fizxs dee-swr LaiVacpral mss Smzn

L7 bl
mra ko

Mem hom

Il rslaner Monege
Tk dud s s e Do dbra,

Adminstration =

s B Lt Mg

Searmh 454 sorn
=i iwmEs ImET

ElL Berace Mansger

= Y PR B o o, B

P, R —— grgn ey g A0 e sk
o =11 NG B v Sarviene dddcmusy
saran I1 K |- .
L AT L L [a
RaLTL - LT BRI I L 1M AR FIT T SN T R AT 1 S
kel Ap IS Las Dwive W _ e
- e 3 Fir Lo P PSS SN L JEVER ST
CTEESTRr izl a T a F—
T RN ACATV FIETTRLIR IR T - a N
LS hocnmi
Bonaai
Lirad I L L L - LLL]
[P — Ecamwin
§ SUE T LB
T i _hEr
Irsambzdan A, s e
aam e Ul Vil g
| e
e TR

Cashibaard Dasnbeard
T | G L e . {5 Baa 1y bk g P P T
IEE———

| SR e — - a— [Arties

] — i 04 T e S —— .
e — p——— e ————— =———

e g F. e

+ A Wi

e

Dasnboard

JJUPIN provides virtually unlimited power to your Jira workflows. Forget about adding tens of plugins to your JIRA installation just to express
yourself: this is all you need to create any post-function, validator or condition in your workflows. Our philosophy was to empower the customer
and to create a JIRA installation that will adapt very easily to the actual needs without any special knowledge of the JIRA internals; for that we
created a JIRA adapted language, named Simple Issue Language 4.0, or simply SIL.

SIL is very easy to learn yet powerful and extensible: it's a Java-like language and it is independent of the JIRA version; furthermore SIL has
made its way through our Database Custom Field and Kepler Custom Fields, Blitz Actions plugins as well as in our newest plugin family member,
KCF PRO , by specific extensions using the same language. All for one purpose: power through simplicity and flexibility.

With Atlassian JIRA at base and with our SIL-enabled plugins on top, we managed to put big smiles on our customer's faces: JJUPIN made
possible incredible integrations and customizations of JIRA.

Whenever you have heavy workflows, integration with your payment systems or you simply want better awareness for your teams, JJUPIN is here
to help. If you want to use Jira as a helpdesk solution, JJUPIN can update your inventory tables directly from JIRA, while your teams are
responding to user requests. If you have a tight SLA, JJUPIN can send intelligent mail, helping the programmers focus on the priorities, and not
being flooded with spam email about trivial modifications in issues.

Common use cases are:

Complex workflows

Integration with legacy systems

Integration with your enterprise systems (relational databases, files, mail systems, LDAP, SMSC)
Integration with other JIRA systems, not necessary the same version.

Smart notifications

Automatically charging for support, when you employ this business model

Besides post-functions, validators and conditions, which are linked directly in your workflow, JJUPIN offers a full environment:

SIL listeners - so you can react when an issue is changed,

SIL services & job scheduling - a way to implement batch updates and notifications to your issues and automate tasks,
A gadget so that regular users can run their own scripts (useful for example by project leads to automate tasks),

A nice editor, with common functionalities such as autocomplete,

A comprehensive view of the workflow actions, screens and their fields and, of course, attached SIL code,

A SIL Manager, so that you can easily browse for and edit scripts,

Live Fields - SIL routines for hiding, disabling, attaching messages or setting values for issue fields in any screen.

We tried hard to minimize JIRA customization time because this is usually something that comes into aid of the real productive activities;
minimizing the time for these customizations means that your teams can benefit faster from them. Our approach was pragmatic, therefore:

® We introduced aliases for custom fields so that one can develop on some test environment then move scripts directly into production,

® We introduced environment variables for SIL,

® All our routines are lenient regarding common user mistakes (e.g. asking for a greater substring than the string has to offer does not
result in error).

Of course, we did not forget extensibility. Registering new routines and adding support for additional custom fields is easy. JJUPIN gives you:

® Include scripts / User defined routines - so you can create libraries of routines
® Mappings for custom fields to a known descriptor, by using Custom Field Descriptors or programatically.
® An easy way to write java routines and hook them into the language. Our Javadoc is available to our customers.

https://confluence.kepler-rominfo.com/display/SIL
http://jira-plugins.kepler-rominfo.com/x/product/id/5
http://jira-plugins.kepler-rominfo.com/x/product/id/8
http://jira-plugins.kepler-rominfo.com/x/product/id/9
https://confluence.kepler-rominfo.com/display/KCFPRO/Home
https://confluence.kepler-rominfo.com/display/SIL/sendEmail
https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=SIL&title=JIRA+instance-independent+programming
https://confluence.kepler-rominfo.com/display/SIL/Environment+Variables

Recently Updated

JJUP30
Feb 28, 2017 - attached by Alexandru Geageac

Supported fields and graphic elements
Dec 21, 2016 « updated by Confluence Administrator * view change

SIL Manager
Dec 15, 2016 ¢ updated by Confluence Administrator « view change

Backup and restore
Feb 05, 2016 - updated by Alexandru Geageac view change

Licensing
Jan 28, 2016 « updated by Florin Haszler < view change

[fShow
Jan 27, 2016 < updated by Alexandra Topoloaga ¢ view change

E [fHide
Jan 27, 2016 « updated by Alexandra Topoloaga ¢ view change

What should | do if | installed an incompatible version?
Dec 02, 2015 « created by Alexandra Topoloaga

Requirements
Nov 16, 2015 « updated by Alexandra Topoloaga ¢ view change

Install notes for JIRA 7
Nov 16, 2015 » created by Alexandra Topoloaga

runnerLog
Sep 17, 2015 « updated by Alexandra Topoloaga ¢ view change

Parameters in SIL Runner Gadget
Sep 15, 2015 « updated by Alexandra Topoloaga ¢ view change

Selection_001.png
Sep 15, 2015 - attached by Alexandra Topoloaga

['55] IfHideAllExcept
Sep 09, 2015 « updated by Alexandra Topoloaga * view change

Routines
Sep 09, 2015 « updated by Alexandra Topoloaga view change

Introduction

JJupin

JJupin is a OSGI enabled JIRA plugin that offers scripting capabilities to JIRA.

SIL

The scripting language, named SIL (Simple Issue Language 4.0), helps you improving JIRA work flows, by extending them with new conditions,
post-functions and validators, while keeping you free from the changes of the JIRA API.

This language offers conditional behaviour in post-functions (which otherwise would require new states in the workflow — thus simplifying your
workflow), string manipulation routines for JIRA fields, SQL access, operating system access (command line, email, ...) and many more.

The language is intended for people who do not want to enter into implementations details of JIRA, users who do not know Java, but not only.
The purpose of the language was to make things as simple as possible , so a person without (many) programming abilities can use it, but
retaining as much flexibility as possible and exposing what we believe to be the basics of work flow customization.

If the standard functionality is not enough, you may extend the language with your own functions and your own custom field support. For details,
please contact us.

What's new in JJUPIN 3.0

https://confluence.kepler-rominfo.com/display/JJUP30
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/display/~admin
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776569&selectedPageVersions=12&selectedPageVersions=11
https://confluence.kepler-rominfo.com/display/~admin
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776518&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=19988520&selectedPageVersions=6&selectedPageVersions=5
https://confluence.kepler-rominfo.com/display/~fhaszler
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776542&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776562&selectedPageVersions=2&selectedPageVersions=1
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776561&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776513&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776572&selectedPageVersions=5&selectedPageVersions=4
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=19989423&selectedPageVersions=3&selectedPageVersions=2
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=19989134&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776549&selectedPageVersions=2&selectedPageVersions=1
https://confluence.kepler-rominfo.com/display/SIL

* Updated to work with Simple Issue Language 3.0 and all the goodies it brings.

* Dropped support for SOAP remote calls. All remote calls are now done via REST.
® Updated SIL Listener configuration Ul
® Updated SIL Services & Scheduler configuration Ul

Requirements

A fully installed JJupin consists of multiple jar files. You are advised to use the bundle installer when installing JJupin. Please refer to the Install
Guide for explanations and details.

At the minimal level JJUPIN consists from 2 dependencies (jar files): katl-commons (a library having countless utility routines, but also - most
important - the SIL language parser) and JJUPIN jar file, which contains JJUPIN specific routines plus the user interface : script editor, gadgets,
JIRA specific hooks, etc.

SMS functionality is achieved still through the same jar file (jjupin-integration jar).

Compatibility

JJUPIN Version JIRA katl-commons

3.0 6.X 3.0
3.0.1 6.x 3.0.1
3.0.2 6.X 3.0.2
3.0.3 6.x 3.0.3
3.04 6.x 3.04
3.05 6.X 3.0.5
3.0.6 6.x 3.0.6
3.0.7 6.X 3.0.7
3.0.8 6.x 3.0.8
3.0.9 6.x 3.0.9
3.0.10 6.x 3.0.10
3.1 7.X 3.1

Installation & Configuration

This is the JJUPIN administration section. Please refer to each subsection for details on how you should configure the product.

Installation

Install notes for JIRA 7
Administration Page
SIL Configuration

Mail Configuration
Remote Systems

SQL Configuration
LDAP Configuration
Configuring a SIL JIRA Service
Configure JIRA Logging
Licensing

Uninstall

Installation

Installation via Atlassian Universal Plugin Manager

https://confluence.kepler-rominfo.com/display/SIL30
https://confluence.kepler-rominfo.com/display/SIL30/What%27s+new+in+SIL+3.0

This page points the simple steps to follow for installing the plugin using the Universal Plugin Manager. This method requires an internet
connection.

Manual Install

It may seem more complicated, but a manual install is quite easy to do. After all, all you have to do is to copy some files. Here's how.

Installation via Atlassian Universal Plugin Manager

Installation via Atlassian Universal Plugin Manager

If you are not familiar with Universal Plugin Manager (UPM), please read this document before we begin.
Steps are simple:
1. Enter the administration screen and go to Add-ons->Find new add-ons.
2. Search for jjupin plugin and install it.
That's all.
Note
The jjupin-integration provider jar cannot be installed via the UPM, since it will need a JIRA cold restart. If you need remoting

capabilities, you will have to download it from our site (jira-plugins.kepler-rominfo.com) and placed manually in the JIRA_INSTALL_DIR
/atlassian-jira/WEB-INF/lib directory

Manual Install

Manual Install

Do not worry, it's a simple task to install it manually:
1. Download the correct jjupin obr file from Atlassian Marketplace or from our site: Kepler Products.
2. Go to Administration->Add-ons->Manage add-ons. Install the previously downloaded obr file by using 'Upload add-on' link.

3. [Optional] Copy jjupin-integration-provider jar into JIRA_INSTALL_DIR/atlassian-jira/WEB-INF/lib. This is optional and it is needed only if
you plan to do remoting on JIRA - you can call scripts at a distance, on your JIRA instance (so you can better integrate JIRA with other apps, for
instance). This step needs a JIRA restart.

4. Install a license for jjupin, which can either be provided as the jjupin.lic file, or as the key generated via the Atlassian Marketplace. See more
details about this in Licensing.

5. [Optional, but highly recommended]: Enable logging on our modules. Open with a text editor of your choice the JIRA log4j configuration file JIR
A_INSTALL_DIR/atlassian-jira/WEB-INF/classes/log4j.properties and add these 2 lines at the end of it. Restart Jira.

| og4j .1 ogger.com kepl errom nfo=I NFO, filelog
| og4j.additivity.com kepl errom nf o=fal se

Installing a New License

To install a new license, there are four easy steps you must follow:

1. Acquire the license file. (jjupin.lic)
2. Stop JIRA.
3. Copy (or overwrite) the jjupin.lic file to JIRA_HOME/kepler/. If the kepler folder does not exist, create it.

4. Start JIRA.
Install notes for JIRA 7

When upgrading from an older version of JIRA to JIRA 7, you must update all our plugins as well.

As you can see on this page, the versions compatible with JIRA 7 are the 3.1.x versions.
What should I do if I installed an incompatible version?

http://confluence.atlassian.com/display/JIRA/Managing+JIRA%27s+Plugins
https://marketplace.atlassian.com
http://www.kepler-rominfo.com/pages/solutions/jira-plugins
https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.jjupin
http://jira-plugins.kepler-rominfo.com

As we have said before, 3.0.x versions are compatible with JIRA 6.x and 3.1.x versions are compatible with JIRA 7.x.

If you have installed JJUPIN 3.0.x on JIRA 7.x or JJUPIN 3.1.x on JIRA 6.x, you should do the next steps :

. Uninstall warden

. Uninstall katl-commons

. Uninstall JJUPIN

. Install the right version of JJUPIN (the one compatible with your JIRA)
. katl-commons and warden should now have the right versions as well

b~ wWNBE

After you uninstall katl-commons and warden, some plugins may remain disabled, so you may need to re-enable them
manually.

Administration Page

Introduction

To allow for better customization of JJupin to suit your needs, we have created an administration area where you can configure various
parameters.

Navigate to Administration > Add-ons -> JJupin to get to the JJupin Administration Page:

Kepler parameters for the JJUPIN plugin
Configuration values for plugin : jjupin

Default Program Name Punnamed SIL?

Default comment Start your programs with code corm|
Default filename unnamed

Defauit directory silprograms

SIL Web Service enabled? | false v

SIL Web Service Run As:
Save configuration

+ New~ #Edit~ < Refresh & save QsSearch Replace = Seftings Legacy Editor

1 |Hello $recipie
3 |This is & test template sent from Sassignee$'s issue SkeyS. The summary for this issue is: Ssummary$,
& emails b
. . 5 |Sassigness says that $cookiss
K emailipl
B emailSubjecttpl
Bk README
B silaliases
B sil properties q

1. Configuration Values for JJupin Plugin

Default Program Name - the name of the default SIL script name that appears in SIL editor when you create a new condition, validator or
post-function.

Default comment - the default comment that appears in SIL editor when adding or editing a new SIL script. The first (max. 3) commented lines
will appear as a description for your condition, validator or post-function.

Default filename - the default SIL file name to save your program as.

Default directory - the default directory where SIL scripts will be saved. If no absolute path indicated, then will be considered the relative path
to <JIRA_HOME>

SIL Web Service enabled? - indicates if the SIL Web Service is enabled or not

SIL Web Service Run As - the username to run the service as.

2. Email Templates and Configuration Manager

The left side of the editor includes the file tree for the email template directory and the configuration directory where you can define aliases for
custom fields and properties for SIL environment.

Info
See Mail Configuration for instructions on how to use email templates.

You can create, delete, rename or edit email templates using this editor. It also offers search/replace capability.
Advanced Config
In this section of JJupin Administration you can configure the next parameters:

Advanced configuration for JJupin

Asynchronous Runner

Threads | o |

The number of threads to be initialized by the thread pool for minor asynchronous operations
Time To Live (TTL) [1h ||
Maximum running time for a SIL script. A script that takes more than the maximum allowed time to run will be killed and end with no result.

Checkpoint Interval [5m |2 |

Time interval between cleanup actions on the threads that exceeded the TTL.

Asynchronous Runner

This are the parameters for SIL Runner Gadget (up to the 3.0.8 version). Since version 3.0.8, the pool only cares about a limited set of
functionality in the SIL manager (calculating usage, etc)

Threads - the number of running threads (number of sil scripts running in the same time).

Time to Live (TTL) - time to live (running time for a sil script). If you run a script that takes more than TTL configured, the script will end with no
result.

Checkpoint Interval - interval to clean up the expired threads (the sil scripts that exceeds the TTL configured).

Startup Script

Allows you to configure a startup script; this script is run every time JJUPIN gets started, either for administrative reasons (i.e. update of the
plugin) or at JIRA's own startup. This feature appears at 3.0.8 version.

Startup Script

SIL File [joptfatla55iam’jira63home,fsilprogramsjjob,sil

The startup script will be run at the start of the plugin.

SMS Provider Configuration

SMS Provider Configuration

1. Copy JJupin-integration-provider.jar file into <InstallPath>/atlassian-jira/WEB-INF/lib

2. Configure the EnmsProvider:
Create "enms.properties file into <JIRA_HOME>/kepler folder. It's the same path where the Kepler licenses (e.g. for jjupin) are located.
Provide the configuration for SMS provider:

enms.user=<username>
enms.password=<passwd>
enms.endpoint=http://ems.kepler.ro/emsws/service.asmx?wsdl
enms.default.sender=<phone number>

enms.unicode=false

Restart JIRA to put into effect this configuration. Each change needs restart.

Configuration Details
enns. user is the username to authenticate against the web service end point
enns. passwor d is the password to authenticate against the web service end point
enns. endpoi nt is the URL where the web service is located
enns. def aul t. sender is the default sender phone number that is used by the web service to send messages with

enns. uni code enables or disables the unicode text representation

The integration jar can be retrieved from this location: https://www.kepler-rominfo.com/static/downloads/com.keplerrominfo.jira.plugins.jjupin/reso
urces/jjupin-integration-provider-2.0.2.jar

SIL Manager

SIL Manager

The SIL Manager allows you to create, delete, edit and view all the SIL programs used in the JIRA environment (Conditions, Validators,
Post-Functions, SIL Service and SIL Runner Gadget).

SIL Programs Manager

Here you can manage all your SIL programs

+New r | #Edit~ | SRefresh | ® CHECK L save Qsearch = Replace = Settings = Show usage Legacy Editor
Q Shull(afse :zr;:),\ {
return false, "Mesds affected versions";
@ silprograms 4 |1

W test_project
B clonePF sil

& create_V.sil

b createPF sil

B ggtsil

K hook.sil q

B ffinitsil

K listener.sil

K sil.properties

E startPFsil

h startPF2.sil

SIL scripts browser:

The script browser allows you to see and manage all the SIL programs. By default, when opened, the browser will show all existing SIL scripts.

You can click on 'Hide unused' button to filter the view so only the programs which are in use in a condition, validator, post-function, service,
gadget or live fields configuration are visible.

http://ems.kepler.ro/emsws/service.asmx?wsdl
https://www.kepler-rominfo.com/static/downloads/com.keplerrominfo.jira.plugins.jjupin/resources/jjupin-integration-provider-2.0.2.jar
https://www.kepler-rominfo.com/static/downloads/com.keplerrominfo.jira.plugins.jjupin/resources/jjupin-integration-provider-2.0.2.jar

The available operations are:

New - creates a new SIL file or folder under the selected directory.

Note
You can only create new files and folders in the non-filtered view. You can toggle this by clicking Show(Hide) Unused.

Delete - deletes the selected file or directory

Warning
Deleting files or folders will also delete them from the disk, so all the contents are lost and cannot be recovered.

Rename - renames the selected folder or file
Refresh - reloads the SIL file tree. This is useful when the usage of some programs changes.
Show/Hide unused - shows or hides the unused SIL files scripts.

Tip

To hide the file browser, click on the vertical bar that separates it from the editor. Additionally you can resize it by dragging the border
between the file picker and editor.

Right-click items in the script browser to see a contextual menu of available actions for the selected file.

Searching

When a folder is selected, you can start typing in the search box to find files by name. Note that this search is recursive and will also look inside
folders under the currently selected one.

Editor

When a file is selected in the script browser, its contents will be loaded into the editor.

The toolbar allows for quick actions such as checking the script for errors, saving changes, find/replace functionality. Additionally you can
fine-tweak some settings of the editor by clicking the Settings button and changing the values in the pop-up dialog.

Clicking the Show Usage button will toggle the editor between showing file contents and where the script is used, such as workflow actions,
listeners, services, etc. You can also look inside other scripts for declarations where the current file is included. Note that this may take a while if
you have a large number of scripts. Note that while editing a script, pressing Ctrl+Space will open up an auto-complete suggestions menu.

+ New ~ #Edit~ | TRefresh | ® CHECK L Save QSearch Replace Settings = Show editor Legacy Editor

2 File Path

& silprograms

C:\Program Files ian\JIRA_6.0\home\silprograms'createPF sil

@ test_project

ki clonePFsil Workflows
B create_V.sil -
_ Workflow Transition
B createPF sil
E ggtsil TEST Workflow (Draft) Create Issue
B hook sil q
E rinit il TEST Workflow Create Issue
B listenersil Find included usages
B sil.properties

B startPF sil
B startPF2.sil

Credits for the editor go to the Ace editor.

SIL Services & Scheduler

Managing SIL Services

http://ace.c9.io/

The SIL Services feature allows users to run SIL scripts periodically. Each SIL Service has the following fields/properties:

® Name - short name to explain what the service does

® Run As - the user to impersonate when running the service
® Interval - the interval between two consecutive runs. The input requires a "JIRA-style" formatted interval (e.g. 3d 12h 30m). However,

note that, as opposed to intervals used throughout JIRA, this representation assumes a 24h/day 7days/week timeframe.
® Script - the script to run. Note that these scripts do NOT have an issue context.

Info
To edit the actual scripts, please use the SIL Manager.

Managing SIL Scheduler

Availability
This feature is available since jjupin 3.0.8 .

The SIL Schedulers feature allows users to run SIL scripts after a valid JIRA interval or using a CRON expression.

The jobs are not persistent and they use run once per cluster policy. Please read about scheduling jobs here: Scheduling Routines. Since this
mechanism uses the same scheduling engine, the same notes apply.

Each scheduled job has the following properties:

® Schedule - a valid JIRA interval or a CRON expression

® Repeatable - if you use a JIRA interval you can choose if the job repeats every interval
® SIL File - the SIL Script that will run using the schedule defined by the user

® Arguments - the arguments of the job

https://confluence.kepler-rominfo.com/display/SIL30/How+It+Works
https://confluence.kepler-rominfo.com/display/SIL30/Scheduling+Routines

Add Job

Scheduler Type’E Interval

Schedule” | 2h 30m

Add a valid JIRA interval or a CRON expression

Repeatable ¥

[fnot cran, is this job repeatable?
R *
SILFile || seject a folder Q

W silprograms
im testscripts [
E 1sil
E asil
Bl addGroupFromRole sil
E alifields sil
k arrayFind.sil
Choose a job SIL file from the file tree above.

Arguments | param1 param2

Arguments for the above job, separated by space

Add job | Cancel

Add Job

Scheduler Type" | Cron

Schedule” [0012**2
Add a valid JIRA interval or a CRON expression

Lk
SILFile || gaject a folder Q

W silprograms
il testscripts D
1.sil
a.sil
E addGroupFromRole sil
E alifields sil
k arrayFind.sil
Choose a job SIL file from the file tree above.

| I

Arguments | param1 param2)|

Arguments for the above job, separated by space

Add job | Cancel

SIL Listener

SIL Listener

The SIL Listener allows users to execute a script when certain events are triggered. Each entry for the SIL Listener represents a script the will run
for an event and has the following fields/properties:

® Event - mandatory - the event to react to

® Run As - optional - user to impersonate when running the script. If left empty, the script will be run by the currently logged in user. This
setting may be necessary if certain scripts require additional privileges than regular users.

® Script - mandatory - the script to run when the event is received

Multiple listener entries can be added for the same event.

Infinite Loop
When selecting a script for an event, please make sure that the script does not use the raiseEvent routine to raise the same event, as
this will cause a loop and crash your JIRA instance.

SIL Context

When writing the SIL script that will handle an event, the username of the user who triggered the event will be available as the first element in the
argv variable and it can be used like this:

Also, the issue context (all the standard variables and custom field values) will be set to those of the issue where the event was triggered from.
For example, if a SIL script is triggered by an event launched from the issue "TST-123", all the standard variables and custom fields used in the
SIL script will point to the issue "TST-123", unless specified otherwise using the construction %otherlssueKey%.variable.

Info
To edit the actual scripts, please use the SIL Manager.

Aside from the issue events that are configurable from the JIRA Ul, the SIL Listener also allows you to react to other events. Note that these
events, since they're not related to an issue will not run in an issue context and using issue standard variables without qualifying them with the key
of the issue does not make sense. Additionally, each event may add additional information to the argv variable, aside from the information that is
common for all events.

The first three elements in the argv array (string array) are (note that indexing in the array starts from 0) :

1. The user that triggered the event
2. Aninternal id for the event that was triggered. Normally you should not need this.

3. The name of the event as specified in the dropdown list that configures the listener.

The next elements in the array after these are event-specific and are detailed in the table below

Event Additional Parameters Observations/Example

Version 4. version ID Version v = (Version) argv[4];

Created]]]
5. the string representation of a Version structure. You can

Version retrieve this value and then cast it to a "Version" structure.
Archived

Version
Moved

Version
Released

Version
Unarchived

Version
Unreleased

Version 4. version ID Even though you can merge multiple versions into one at once,

Merged))) the JIRA API only provides reference to a single merged version.
5. the string representation of a Version structure. You can

retrieve this value and then cast it to a "Version" structure.
6. merged version 1D

7. the string representation of the merged version (castable
to Version, similar to 5).

Version 4. version ID

Deleted
5. empty (the version is already deleted at this point and

details are no longer available)

Project 4. project ID

Created)) .
5. the string representation of a Project structure. You can

retrieve this value and then cast it to a "Project" structure
Project 4. project ID

Deleted
5. project KEY (the project is already deleted at this point

and details are no longer available)

SIL Custom Field Descriptors

SIL Custom Field Descriptors

Sil custom field descriptors are used to translate the custom field value into a valid SIL value. Most of them are already mapped to a certain
descriptor, but there are some of them which are not.

For the custom fields that are not mapped to a descriptor, the default descriptor is used. This does not guarantee that the descriptor is the proper
one for the field, but it will attempt to determine the correct type.

Steps for the configuration
If you have such fields, here is how to configure the custom field descriptors:

* Navigate to Administration -> Kepler General Parameters -> Custom Fields to get to the SIL Custom Field Descriptors.
® Search for the custom fields that you use in the SIL scripts and choose the right descriptor.(fields already registered have the list of
descriptors disabled)

http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Project
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Project

® Choose the proper descriptor.
® The "Saved" message should appear.

® Now you can run a test SIL script to verify the behavior of the custom field.

List of Descriptors

Here is the list of descriptors you can choose from:

Custom Field Key Descriptor

com.atlassian.jira.plugin.system.customfieldtypes:datetime [Date -> date M
S

com.atlassian.jira.plugin.system.customfieldtypes:datepicker |Date -> date M
com.keplerrominfo.jira.plugins.blitz-actions blitzactions-cf | Default M
com.atlassian.jira.plugin.system.customfieldtypes:readonlyfield |Defauh M

com.atlassian.jira.plugin.system.customfieldtypes:radiobuttons

[Option -> string

com.atlassian.jira.plugin.system.customfieldtypes:multigrouppicker

| Group[] > string]]

com.atlassian.jira.plugin.system.customfieldtypes:float

- Business Value
«+ Story Points

[Number -> number

com.atlassian.jira.plugins jira-importers-plugin:bug-importid

| Default

com.pyxis.greenhopper.jira:gh-sprint

+ Sprint

| Default

com.atlassian.jira.plugin.system.customfieldtypes:version

|Version[| -> siring []

com.atlassian.jira.plugin.system.customfieldtypes:textarea

| String -> string

com.pyxis.greenhopper.jira:gh-global-rank

| Default

com.keplerrominfo.jira.plugins.usergrouppicker-pro:siluserpicker

« silugp

| User -> string

com.atlassian.jira.plugin.system.customfieldtypes:url

|String -> string

com.atlassian.jira.plugin.system.customfieldtypes:multiselect

| Option[] -» string[]

com.keplerrominfo.jira.plugins.keplercf:regexcf

|String -> string

com.atlassian.jira.plugin.system.customfieldtypes:multiuserpicker

1. Default

[User[] -> string]]

Default

Default

Boolean -= boolean
Interval -= interval
User[] -= string|]
Group -> string

1 Mumber[] -> number]]
Option -> string
Mumber -= number
Boolean([] -> boolean(]
Date[] -= date(]

Date -> date

User -= string

| Label[] -= string(]
String -= string
Interval[] -= interval[]
Group[] == string|]

| Cascade -= string []
Collection{String) -> string [

This descriptor will try to determine the SIL representation of the custom field based on the type of its value.

2. Boolean -> boolean

Translates a boolean to its SIL internal representation.

3. Interval -> interval

Translates an interval to its SIL internal representation.

The custom field value can either be the user friendly string representation (1d 2h) or the number of seconds.

4. User[] -> string []

Translates a collection of Users to a string array.

The collection can also be represented as a single string with values separated by a pipe (|).

The values represent the usernames.
5. Group -> string

Translates a group to a string value representing the group name.

6. Number[]-> number []

Translates a collection of numbers to a number array.

The collection can also be represented as a single string with values separated by a pipe (|).
7. Option-> string

Translates an option to a string value.
8. Number -> number

Translates a number to its SIL internal representation.
9. Boolean[]-> boolean(]

Translates to an array of boolean values.

Custom field value can be a collection of boolean values or their string representation separated by a pipe (|).
10. Date[] -> date []

Translates a collection of dates to a date array.

The collection can also be represented as a single string with values separated by a pipe (|).
11. Date -> date

Translates a date value to its SIL internal representation.
12. User -> string

Translates a user to a string value representing the username.
13. Label[] -> string []

Translates labels custom field to a string array containing the labels as strings.
14. String -> String

Translates to a string value.
15. Interval[] -> interval []

Translates a collection of intervals to an interval array.
The collection can also be represented as a single string with values separated by a pipe (|).

The interval values can be represented either in a user-friendly string form (1d 2h) or in seconds.
16. Groupl[] -> string []

Translates a collection of Groups to a string array.
The collection can also be represented as a single string with values separated by a pipe (|).

The values represent the group names.
17. Cascade -> string []

Translates to an array of string values. First is key, second is value.
18. Collection(String) -> string []

Translates a collection of string values to a string array.
The collection can also be represented as a single string with values separated by a pipe (|).

Table of custom fields

For every type of custom field available, a list of existing custom fields of the respective type is displayed like in the picture below:

com.keplerrominfo.jira.plugins.databasecf.databaseinput String -» String j

That's it! However, if any exceptions occur, check the log for details on what went wrong.
Live Fields Configuration

If you want your JIRA fields do whatever you want whenever you want, you have to make a Live Fields Configuration and associate it with a
project.

You can do this from Administration -> Add-ons - >Live Fields.

Info
For more information see Live Fields.

Blitz Actions Live Fields Configurations
JJUPIN

Al e Cono Here you can manage all your live fields configurations. .
=7 Add Configuration
Workflow Viewer

SIL Manager Name Description SIL File Projects era
SIL Services
Iftest1 L\\, C:\Program Files\Atlassian\Application DataWIRAS 1. T\silprograms\LiveField2_sil Edit | Associate | Delete
SIL Listener
= Iftest C:\Program Files\Atlassian\Application DatalJIRAS. 1. T\silprograms'LiveField1.sil s PRI® Edit | Associate | Delete
Custom Fields . TST®
Live Fields = g 3 i . i i
Iftest2 C:\Program Files\Atlassian\Application Data\JIRA5. 1. ThsilprogramsiLiveFieldTest. sil s PPM & Edit | Associate | Delete

Add configuration

To add a configuration you have to click the Add Configuration button.

In the displayed dialog box you have to enter the configuration name and description and you have to choose a SIL File for the Live Fields
Configuration.

Add Live Fields Configuration

Name* LiveFields
Prowide a name for the configuration.

Description Live Fields first configuration test

SIL File C:\Program Files\Atlassian\Application Data\JIRAS 1 TisilprogramsiLiveFie

Choose a SIL_ﬁIe_f!:lr t!'ln; u_:unf_'lg_u_rqtinn fru:ln_'l tl'_l e_ﬁle t_ree_be_luw.

Hz= C\Program Files\Atlassian

[FHiz= silprograms
[£) LiveField1_sil
LiveField2_sil
Bl LiveFieldTest sil
SlLtesting.incl

hook.sil =
) hook1.sil

»

m

Add Cancel

where:
Name - Live Fields configuration name
Description - Live Fields configuration description

SIL File - the SIL script that will be executed on every issue page for the associated projects.

You can also edit and remove a configuration by clicking the Edit/Delete link. The configuration will be removed if there aren't projects associate
with it.

Cannot delete configuration. It is being used in 2 project(s).

Associate project

Now, you have to associate the configuration with a project. You can do this by clicking the Associate button from the configuration row.

Here you can manage all your live fields configurations.

Iftest1 C:\Program Files\Atlassian\Application Data\JIRAS. 1. T\silprogramsiLiveField2 sil * PPM &
Iftest C:\Program Files\Atlassian\Application Data\JIRAS.1.T\silprograms'LiveField1 sil « PRJ®

« TST®
Iftest2 C:\Program Files\Atlassian\Application Data\JIRAS.1.T\silprograms'LiveFieldTest sil

5= Add Configuration

Edit | Associate | Delete

Edit | Associate | Delete

Edi Delete

A dialog will be displayed from where you can choose the project to associate with.

Edit | Associate | Delete

Associate Project

Project -- Select a project — E]

the current configuration
PRJT - Proj
FPM - ProjFM
TST - Test
TP - TestPrj
TES - TestPrj1
PR.J - TestProj

You can also remove an association by clicking the Remove project red icon at the right of the project you want to remove.

Associate project from Project page

You can also associate a Live Fields Configuration with a project from the Project page, in Administration. You can do this in the Live Fields

Config tab from the project page.

Versions

Components

Issue Collectors

Live Fields Config

From the Configuration select you can choose the Live Fields Configuration for the project.

Live Fields Configuration

Iftest

Select and save a live fields configuration for the current project from the select list below. The configuration SIL script will get executed on page load for all issues in the current project.

Configuration Iftest -

Iftest C:\Program Files\Atlassian\Application Data\JIRAS. 1. T\silprograms\LiveField1.sil

After associating a project with a Live Fields Configuration, the SIL file from that configuration will be executed on every issue page of that project.

SIL Configuration

In this page you can configure specific parameters for the SIL language, such as email options, SIL Tree caching and programming warnings.

Navigate to Administration -> Add-ons -> SIL Configuration to get to the administration page for the SIL language configuration:

Configuration for SIL language

Generic Configuration

Charset | windows-1252 v
Charset that will be used to read from files on disk.

Email Templates Directory |emails
Path for the directory where the email templates will be stored. Can be either absolute, or relative to the Kepler directory in JIRA_HOME.

Default Email language | Sender language ¥
Default language to use with internationalized email templates.

Email Sender | SMTP Direct v
Email channel to use when sending emails.

SIL Tree Caching

Caching Enabled @® QN OFF
Ifenabled, caches the parsed SIL trees for reuse. This will reduce the time needed to run a cached script by ~50%.

Cache Size |100 v |scripts
Provides the number of scripts to hold in the cache. When full, the cache will replace existing entries based on a LRU algorithm.

Clear Cache Clear

Flushes all cached scripts. New scripts will need to be parsed before being added into the cache.

SIL Programming Warnings

Enable Warning Report ON ® OFF
Ifenabled, will print a report in the logs showing any warnings we found during execution of the script.
This will be useful especially when developing new scripts or debugging old ones.
Mote: Since the warnings are useful mostly for debugging purposes, this setting will not be kept between restarts.

Save

1. Generic Configuration

Here you can configure the following parameters:

Charset - charset that will be used to read from files on disk.

Email Templates Directory - path for the directory where the email templates will be stored.

Default Email language - default language to use with internationalized email templates (sender language or receiver language).
Email Sender - see Mail Configuration

For more details regarding email configuration check the Mail Configuration section.

https://confluence.kepler-rominfo.com/display/SIL/Home

2. SIL Tree Caching

For caching your scripts and reduce the time needed to run them you have to configure the next parameters:
Caching Enabled - if enabled, caches the parsed SIL trees for reuse, reducing the time needed to run a cached script by ~50%.
Cache Size - the number of scripts to hold in the cache.

Clear Cache - removes all the scripts from the cache.

3. SIL Programming Warning

This parameter is useful especially when developing new scripts or debugging old ones.

Enable Warning Report - if enabled, will print a report in the logs showing any warnings that has been found during execution of the script
(useful especially when developing new scripts or debugging old ones).

Mail Configuration

The SMTP server used by JJupin is the same JIRA is using. You do not have to configure anything special here.

Email templates

Configuration for SIL language

Generic Configuration

Charset | windows-1252 M
Charset that will be used to read from files on disk.

Email Templates Directory [amaile
Fath for the directory where the email templates will be stored. Can be either absolute, or relafive to the Kepler directory in JIRA_HOME.

Default Email language |Sender language
Default language to use with internatienalized email templates.

Email Sender |[SMTP Direct v
Email channel to use when sending emails.

SIL Tree Caching

Caching Enabled ON ® OFF
If enabled, caches the parsed SIL trees for reuse. This will reduce the fime neaded to run a cached script by ~50%.

Cache Size [100 v | scripts
Provides the number of scripts to hold in the cache. When full, the cache will replace exising entries based on a LRU algorithm.

Clear Cache

Flushes all cached scripts. Mew scripts will need to be parsed before being added into the cache.
SIL Programming Warnings

Enable Warning Report ON ® OFF
If enabled, will print a report in the logs showing any warnings we found during execution of the script.
This will be useful especially when developing new scripis or debugging old ones.
MNote: Since the warnings are useful mostly for debugging purposes, this sefting will not be kept between restarts.

Save

The email templates folder, as well as the email language are configurable and can be set from the SIL Configuration admin page under Generic
Configuration.

At runtime, when a template is requested, it looks for templates in a locale folder within the default template folder. (Ex:mydefaultfolder/en_US/te
mplate.tpl, then it will look for mydefaultfolder/template.tpl - assuming you configured mydefaultfolder as a template directory).

Within the templates, any standard or custom field defined in the issue that called the routine can be referenced using the notation $field$.

Example:

f Hel | o $recipient$!, the sender $sender$ announces you that the assignee for
! issue key is $assignee$

At runtime, the plugin will replace with real values the body of the email.

Warning
$recipient$ and $sender$ will only work if the addresses belong to JIRA users and not some external email addresses.

Tip
You can create, edit, delete and upload email templates using the built-in browser and editor in the administration page.
The Email Sender selection box contains two options:

® SMTP Direct (default) - will attempt to connect directly to the default SMTP server and immediately send emails
® JIRA Mail Queue - will create an item in the default JIRA Mail Queue and will be sent along with other JIRA email notifications when the

queue is flushed.
Remote Systems

Remote SIL configuration

If you enable the remote SIL, you will be able to execute SIL programs on some other JIRA instance running SIL using REST. It does not require
any other library file and it has a lower encoding footprint. The configuration is kept in the rest-client.properties file.

REST:

® Requires only katl-commons, this gives you liberty
® Documentation is here

Resolution when calling a remote system

As you know, you can call a remote system via a call() routine invocation. The resolution of the system is as follows:

1. Try to see if the name of the system is empty (") or the string 'local'. If yes, it will call a local script
2. Next, try to find the name of the system as defined by REST. If it is defined, it calls the REST remote system

3. Ifitis not defined, error

REST Remote Systems

REST Remote Systems

Using REST remote systems you will be able to execute SIL programs on some other JIRA instances running SIL.

A file named 'rest-client.properties' should be placed in the kepler directory (along with the licenses). For each system, you should configure the
URL and the connection details.

Example:

The following defines two remote systems: 'REMOTE' and 'ANOTHER":

https://confluence.kepler-rominfo.com/display/SIL30/call

rest-client.properties
REMOTE=ht t p: //192. 168. 17. 112: 8080

REMOTE. user =admi n
REMOTE. passwor d=adm n

ANOTHER=ht t p: //192. 168. 17. 113: 8080
ANOTHER. user =admi nl
ANOTHER. passwor d=adm n123

An easier way is to manage the REST remote systems from the special administration page at Administration > Add-ons > REST Remote
Systems

Remote Systems Configuration

REST Remote Systems

Here you can configure the remote systems that you can access via their local SIL REST senvice provided by katl-commons. Once you have set up the systems, you will be able to run remote scripts
with the call routine using the systems name.

REMGTE hittp://192.168.17.112:3080 adrmin Hidden Edit | Delete
ANOTHER hitp-//192.168.17.113:8080 admint Hidden Edit | Delete
\ Add

Local REST Service Parameters

Allowed REST Users admin, developer1. developer2, developer3. developerd

Specify the users that are allowed to call SIL scripts using the REST service. Note that this also applies to the call routine for REST clients.

Save

Here you can add, edit and delete REST remote systems in an instance.

In the Local REST Service Parameters section you can specify the Allowed REST Users for calling SIL scripts using the REST service.

SQL Configuration

SQL Configuration

To execute the SQL function, one must define first the datasource. By default, JIRA runs in Tomcat, so the following example applied to Tomcat
only. The user should refer to the application server manual on how to define a datasource.

1. First, make sure you have the SQL driver in JIRA_INSTALL_DIR/lib directory.

2. Then, open with your favourite text editor JIRA_INSTALL_DIR/conf/context.xml file. Enter your datasource there, for instance:

<Cont ext >
<Resource name="Test DB" aut h="Contai ner" type="javax. sql . Dat aSour ce"
user name="sa" password=""
driverd assName="org. hsql db. j dbcDri ver"
url ="j dbc: hsql db: /t np/ sonedb; cr eat e=t rue; "
/>
<Cont ext >

3. Restart JIRA.

4. Check the tomcat logs for errors

You should be now ready to use the datasource you just defined via the sq|() calls, the JNDI datasource name you just created is named "TestDB

Note

The above example works for HSQL DB, which is the embedded JIRA database. You should use correct driver class and a correct URI
syntax for your database. More examples for different databases can be found at Data Source Configuration.

Note

The Guide on how you should configure a datasource is here: Apache Tomcat: Configuring a Datasource

LDAP Configuration

LDAP configuration

We had the option to read the LDAP parameters values from osuser.xml file, but some customers wanted lookaside LDAPs (and not integrated
ones), thus we'll keep this config aside (and most possibly duplicated, but what can we do?).

Go to Administration -> Add-ons -> LDAP Configuration. The following screen appears:

LDAP Configuration

LDAP Parameters

URL
Base DM
User
Password

Directory

The following configuration parameters will be used with the ldapUserRecord routine to retrieve data from an external LDAP server.

http:f/localhost8511/
Endpoint address of the LDAP server.

dec=organization,dc=loc
The base DN for the lookup

cn=binduser,ou=organi
LD&P uzer to authenticate when executing queries.

sesesssssneRe
Pazswaord of the LDAP user

Active Directory «
Type of user directory. Currently only supports Active Directory format which has limited portability.

Save

Example settings:

...

URL = | dap://Iocal host: 389
BI ND USER = cn=bi nduser, ou=l T G oup, dc=al pha, dc=l ocal

PASSWORD = passwOord

BASEDN = dc=al pha, dc=I ocal

Warning

Right now, only the Microsoft Active Directory is supported, though it might work with other systems too (e.g. works with OpenDS).
However, we are eagerly waiting for requests to extend this functionality to different LDAP servers.

https://confluence.kepler-rominfo.com/display/SIL/sql
https://confluence.kepler-rominfo.com/display/DBCF/Data+Source+Configuration
http://tomcat.apache.org/tomcat-6.0-doc/jndi-datasource-examples-howto.html#Database_Connection_Pool_%28DBCP%29_Configurations

Configuring a SIL JIRA Service

Configuring a SIL JIRA Service

If you would like to periodically run a SIL script, you will have to install JJupin as a service. Here is how to do that:

® Goto Administration -> Services

® Give your SIL service a name

® Under "Class" put com.keplerrominfo.jira.plugins.jjupin.services.SILService
® Set the delay.

Add Service
Add a new serice by entering a name and class below. You can then edit it to set properties,
Mame |hdy SIL Service

Class | zom keplerraminfa jira pluging jjupin services SILService
¥ Built-in Services

Delay |100]

Delay betvween running time, in minutes.

Add Service

Next, you will be presented with a configuration screen, where you should:

® Enter the absolute path to the file containing the SIL script
® Choose a user the service will run as (if the user doesn't have administrator privileges, some SIL routines might not work).

Edit Service: My SIL Service

Description:
This service will run the specified SIL program.

Enter text values for service properties below. Any empty fields will be set ta MULL in the Service's initialization.

User |admin o

Start typing to get a list of pozzible matches.
Run &z thiz uzer

SIL Script | Chprogram sil

file to run

Delay 100
Delay - in minutes
“ou can also adjust the delay period of this service. Mote that if wou adjust this delay, the service will be restarted.

Update Cancel

That's it! However, if any exceptions occur, check the log for details on what went wrong.

Tip

You can also try out our SIL Services & Scheduler page.

Configure JIRA Logging

Configure JIRA Logging

JIRA uses Log4J as a logging system. We're interested in output messages produced by our plugins so you will need to configure logging.

1. Open JIRA_HOME/atlassian-jira/WEB-INF/classes/log4j.properties with your favorite text editor.
2. Append the following lines (add them at the end):

| og4j . category. com kepl erromi nfo = I NFO, console, filelog
| og4j .additivity.comkeplerrom nfo = fal se

Note
If you do not perform this configuration step, some routines such as print() will not output messages.

For debug add these 2 lines into JIRA_HOME/atlassian-jira/WEB-INF/classes/log4j.properties file:

| og4j . category. com kepl errom nfo = DEBUG console, filelog
i logdj.additivity.comkeplerromnfo = fal se §

Warning
Setting the level to DEBUG will output a lot of messages and it will hurt your performance. Do this only when instructed by the Kepler
Team.

Info
For more information see JIRA Documentation: Logging and Profiling.

Licensing

Dual Licensing support

Versions 2.0.4 and up support both Kepler and Atlassian licenses, but you only need one valid license to run the plugin, which can either be
provided as the jjupin.lic file, or as the key generated via the Atlassian Marketplace.

The order in which the licenses are checked is:

1. Atlassian License
2. Kepler License

Itis strongly recommended that you do not install both licenses at once, as this might yield unwanted results. For example, consider that you
have an Atlassian License with the support date expired and one valid Kepler License. In this case you cannot update the plugin, because the
Atlassian License is checked first and its support date is expired.

Atlassian Licensing

Note
To support Atlassian licenses you need to install katl-commons 2.0.4+ before installing JJupin.

The Atlassian Marketplace allows you to easily purchase or generate an evaluation license for JJupin.

https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.jjupin
https://confluence.kepler-rominfo.com/display/SIL/print
http://confluence.atlassian.com/display/JIRA/Logging+and+Profiling

Using Universal Plugin Manager 2.0.1+

After generating the license key, all you have to do is access the Administration-> Plugins section in your JIRA instance and paste the key into
the corresponding plugin textbox.

User-installed Plugins

These plugins may be configured, enabled, disabled or uninstalled.

&} Databage Custom Field Plugin for custam field that receives information from a dat
= Jdupin Extra Post Functions, Conditions and Validators for Jira
Jdupin 204

Mupin by Kepler Rominfo

=

Plugin key: com. keplerrominfo.jira. pluging. jjupin

License details: Evaluation, 10-user testing license, expires 24May 12 711 FM

License status:
License key:

Cancel

Manage plugin modules - 35 of 35 modules enabled.

Kepler Licensing

The Kepler license is a file (jjupin.lic) which must be placed in the <JIRA_HOME>/kepler folder. You can either generate and download a free
evaluation license by registering on our site and accessing the Licenses section, or you can purchase the plugin by following these instructions.

You can view details for all the license files situated in the kepler folder, by accessing the Kepler Licenses page from Administration >
Add-ons > Kepler Licenses menu:

Kepler Licenses

Here you can inspect all license files from your kepler home directory { D:\Atlassian\JIRA 5.2 5\Application Data‘kepler).

License jjupin.lic -
Select a license file to see its details.

License Information

Expiration Date 31/Dec13
Maintenance Date 31/Deci14
User Limit 1000
Walid YES

The page shows the expiration and maintenance date, user limit and validity message for each selected kepler license.

If the license is expired, user limit is exceeded or license is targeted for a different JIRA server id, a red colored message shows the status:

http://jira-plugins.kepler-rominfo.com/x/
http://jira-plugins.kepler-rominfo.com/x/pricing/id/3

Kepler Licenses
Here you can inspect all license files from your kepler home directory [D:-\Atlassian\WJIRA 5.2 4\Application Datalkepler).

License kontinuum.lic -
Select a license file to see its details.

License Information

Expiration Date JMNani3

Maintenance Date 31Jani3

User Limit 3

Walid NO License EXPIRED on 31/Jan/13

f kepler license is close to expiration date (less than 10 days remaining), a warning message is displayed, showing the remaining time:

Kepler Licenses

Here you can inspect all license files from your kepler home directory (D:\Atlassian\IRA 5.2 5\Application Data\kepler).

License Jjupin.lic -
Select a license file to see ils details.

License Information

Expiration Date 22Febl13

Maintenance Date 22{Feb/14

User Limit Unlimited

Valid YES Only 7 day|s) remaining
Reminder

Don't forget that you need only one valid license to run the plugin.

Technical info

Starting with katl-commons version 2.5.5 an new plugin, called Warden, will be automatically installed by any paid add-on (including
JJupin 2.5). This plugin is responsible with the management of licenses (both JIRA and Kepler). Do not attempt to uninstall it without
removing first all the Kepler paid add-ons.

Removing an unused license

If you want to remove a no longer used Atlassian license, this can be done in UPM (for UPM 2.0.1+) by removing the old license key
and clicking Update. To remove a Kepler license, you have to delete the correspondent .lic file from the kepler folder. Note that any
change to the Kepler license requires a server restart.

Uninstall

Uninstall via Atlassian Universal Plugin Manager

This page shows the steps to uninstall the plugin using the Universal Plugin Manager.

Manual Uninstall
At first sight, this seem a little bit complicated but actually it isn't. All it has to be done is to remove the plugin manually and delete its tables from
the internal database.

¢ Manual Uninstall

® Uninstall via Atlassian Universal Plugin Manager

Manual Uninstall

Uninstall manually

At first we will uninstall the plugin manually and finally we'll remove the corresponding tables in the internal database.

Uninstall the plugin

You need to have access where the Jira server has been installed.

Goto the folder where Jira server has been installed.

Access <JIRA_APPLICATION_DATA>/plugins/installed-plugins and manually delete JJupin plugin.

Remove the tables

You can go to the internal database administration tool.

You can use a visual tool or a command line tool and remove the following tables in your database:

® krunnablesils
® Kklistenersils

® jjif_config

® jjif_project

® jjif_category

Restart the server

Now you can restart Jira server
Uninstall via Atlassian Universal Plugin Manager

Uninstall via Atlassian Universal Plugin Manager

At first we will uninstall the plugin and finally we'll remove the corresponding tables in the internal database.

Uninstall the plugin

If you are not familiar with Universal Plugin Manager (UPM), please read this document before we begin.

1) Log in as administrator and go to Administration->Add-ons->Manage add-ons

Administration Q, Search JIRA admin

Projects Issues Usermanagement System Add-ons

ATLASSIAN MARKETPLACE Manage add-ons

Find new add-ons
! You can install, update, enable, and disable add-ons here. Find new add-ons

Manage add-ons I“\’

Purchased add-ons @ A newer version of the Universal Plugin Manager is available. Update Now

Skip this version Remind me later

APPLICATION LINKS Filter visible add-ons User-installed hd

Application Links

2) Search for JJupin plugin in “User-installed add-ons™ section and click on “Uninstall

* button

4 Upload add-on <+ Build a new add-on

http://confluence.atlassian.com/display/JIRA/Managing+JIRA%27s+Plugins

User-installed Plugins

These plugins may be configured, enabled, disabled or uninstalled.
B8 Biitz Actions Provites scriptad actions to be perfarmed fom the issue interface
E Database Custom Field Plugin for custorn field that receives information from a databage.

1 Lupin Extra Post Functions, Conditions and validators for Jira

j‘d by Kepler Rominfo
s

Plugin key: corn.keplerrominfo.jira. pluging jjupin
Available plugin version: 268

Plugin system version: TWO

License: Commercial

License key:

Update

Show pricing details
Manage plugin modules - 46 of 46 modules enabled

S Jdupin 255 Disable

Uninstall

Configure

Update

Try

3) Press "Continue™ when the uninstall confirmation dialog box appears

Do you wish to continue?

Lninstalling a plugin will permanently remove this version of the plugin fram JIRA
and your filesystem. Do you wish to continue?

i Caontinue Cancel

4) A message "successfully uninstalled" should appear

S Jdupin
@ This plugin was successfully uninstalled

< Jdupin 258 Disable

j"i by Kepler Rominfa

B

Plugin key comm.keplerrorminfo jira. pluging jjupin
Available plugin version: 2.5.8

Plugin system version. TWWO

License: Commercial

License key:

Update

Show pricing details

Uninstall

Configure

Undate

Try

Buy

Now you can delete JJupin corresponding tables.

Remove the tables

You can go to the internal database administration tool.
You can use a visual tool or a command line tool and remove the following tables in your database:

® krunnablesils
® Kklistenersils
® jjIif_config

® jjif_project

® jjif_category
User guide

In this section, you will learn about the friendly user interface that JJupin offers and its capabilities.

Note
Step-by-step guides, previews, demo images and screenshots were made under JIRA 6.x.

Info
Before using JJupin check out the Simple Issue Language documentation for a better grasp of SIL usage and capabilities.

Table of Contents

Writing Validators, Postfunctions and Conditions
Transition View
Workflow View
Workflow Viewer
SIL Runner Gadget
® Parameters in SIL Runner Gadget

® Live Fields

® How 'Live Fields' work

® Supported fields and graphic elements

® Accessing the current screen

® Routines

® |[fAllowSelectOptions
IfDialogMessage
IfDisable
IfDisableTab
IfEnable
IfEnableTab
IfExecuteJS
IfGlobalMessage
IfHide
IfHideAllExcept
IfHideFieldMessage
IfHideTab
IflnstantHook
IfRedirect
IfRefreshScreen
IfRestrictSelectOptions
IfSet
IfShow
IfShowAll
IfShowFieldMessage
IfShowTab
® [fWatch

® Additional Routines
® runnerLog

Writing Validators, Postfunctions and Conditions

Writing Validators, Postfunctions and Conditions

After you installed JJUPIN plugin, you should go to your JIRA's Administration->Workflows page and create a workflow, associated with a project.
Since you cannot modify the workflow while it's active, you must create a draft workflow, as specified in the JIRA documentation, by pressing the
"Create draft" link. The result should look like in the below excerpt.

http://confluence.kepler-rominfo.com/display/SIL/Home

View Workflows Add Mew Workflow Import From 3ML @

O T delste s workflow, you must first unassign it from any warkflow schermes

jira (Read-only System Workflow) | Default 4 Design | Copy | ®hL

The default JIRA warkflow.

ATestWorkflow 20/Mar12 ® ATestScheme 4 Design | Copy | #hL

Copy of the default JIRA workflow. Admin fmanaila

L ATestWorkflow 20/Mar/12 o ATestScheme 5 Design | Copy | %ML | Edit | Delete | Publish
Copy of the default JIRA workflow. Admin fmanaila
Inactive Copy of jira 20/Mar12 4 Design | Copy | =ML | Edit | Delete
The default JIRA workflow Admin fmanaila

Clinking on a transition will show the transition's conditions, validators and postfunctions.

Transition: Start Progress @ workflow Browser
Open B Start Progress (4) B |In Progress
O ouare editing a draft workflow. “iew the original workflow or publish this draft.
Reopenad | =
Transition View: MNone - it will happen instantly {Originating Steps) {Destination Step)

* Yiew workflow steps of ATestWorkflow (Draft).
* Edit this transition.

* Delete this transition.

* “iew properties of this transition

All Validators (0) Post Functions (B)

O Add a new condition to restrict when this transition can be performed.

Only the assignee of the issue can execute this transition.
Delete

You should always keep in mind that:
1. Whenever an issue advances from one state to another the postfunction will be called.

2. The transition is made possible only if the conditions are fulfilled. Therefore, a condition must return true or false to signal that the condition is
fulfilled or not

3. The validators must validate the data before transition is fired. Subsequently, a validator is entitled to return true or false and optionally the field
and the error message you want to show in the interface.

An important consequence of the above model is that conditions and validators should not have side-effects. In fact, JJupin is discarding
modifications of the issues, allowing them to occur in the postfunction only, but it cannot discard modifications made on another database, for
instance, applied using the sgl routine (see sql() routine for details).

To create conditions, validators and postfunctions, press the corresponding add link, found at the top of the workflow management tab.

The following image shows the creation of a test post-postfunction:

https://confluence.kepler-rominfo.com/display/SIL/sql

% (k) SIL Post-function

O Assign to Current User

O Assign to Lead Developer

O Assign to Reporter

O Create Perforce Job Function

O Update lssue Field

Add Post Function To Transition

Funs a SIL program as a postfunction

Assigns the issue to the current user if the current user has the ‘Assignable User' permission.
Aszsigns the issue to the project/component lead developer

Aszsigns the issue to the reporter

Creates a Perforce Job {if required) after completing the workflow transition.

Updates a simple issue field to a given wvalue.

Add Cancel

After you'll press the "Add" button, you will be ready to write your SIL (in this case, a SIL postfunction)

Update parameters of the (k) SIL Post-function Function for this transition.
Update parameters of the (k) SIL Post-function Function for this transition.

Goto: Plugin configuration Woi

Edit options: ® Update script

Reuse existing script

Name: clone pf ®
The fike of your program is stored as: C:\Program Files\Atlassian\JIRA_S.0\home siiprograms'stanPF sil
Click here to change the default path
Sil code:

ing[] SUMMARIES = {"First sub-task for app
ing[] subtasks = subtasks(key);

ond sub-tas

for approv

umm in SUMMARIES) {

n exists = false;

g subtask in subtasks) {
summary == summ) {

E tion("Reopen Issue", subtask);
10 exists = true;

1 L

12 bi

13~ if(lexists) {

14 createlssue(project, key, "Sub-task", summ);
15 b

16 [}

Q Search Replace = Seftings

Legacy Editor

You can create a new script or pick a script that was already created (or even used for other purposes) in the silprograms folder.

By providing a meaningful name to your program and by pressing the "Add" button, you are now ready to extend your JIRA Workflow:

Returning into the transition screen, your newly added post-function will be reflected in the view:

Transition: Start Progress @

@ vouae editing a draft workflow. View the original warkflow or publish this draft.

Transition View: Mone - it will happen instantly

Wiew workilow steps of ATestWorkflow (Draft).
Edit this transition.

Delete this transition.

* “igw properties of this transition

All Conditions (1) Validators (0]

O Add a new post function to the unconditional result of the transition.

This will run the test SIL program
The file of your program is stored as: Cira\homeksipro gramstest . sl
ffly SIL program wich prints the log

Edit | Move Down | Delete
— THER

The Resolution of the issue will be cleared,
Edit | Move Up | Move Down | Delete

— THERM
Set issue status to the linked status of the destination workflow step.
THEN
Add a comment to an issue if one is entered during a transition.
— THEN
Update change history for an issue and store the issue in the database,
— THEN
Re-index an issue to keep indexes in sync with the database.
— THEN

Fire a2 Work Started On Issue event that can be processed by the listeners.
Edit

Warning:

Modifying Issues
You should avoid modifying issues in conditions and validators, as they are supposed to be read-only. Do not yield to that temptation!
You should modify issue values (or create new issues, or change anything) in the postfunction only.

Info

Your SIL program will be saved on the disk in the folder specified in the configuration. The filename is obtained by removing any invalid
characters from the program name you entered and appending a number to help you browse through different versions of the same file.

Changing the Default Save Path

When editing or creating a new condition, validator or post-function, you will notice a link saying "Click here to change the path". By default,
JJupin saves all the programs in a (configurable) folder, but you also have the ability to select a different one. By clicking on the link, you will be

presented with the following view:

Click here to change the default path.

+ Mew » FEdit~ | 2 Refresh

& silprograms
im fest project

Here you can choose an already existing folder to save your file into and even create and delete new ones.

The name of the file your program will be saved as is calculated by removing any invalid characters from the program name and appending a
version number at the end.

Note
For best experience, we recommend Google Chrome or Mozilla Firefox.

Return codes:

Returns codes are different for validators, conditions and postfunctions

For validator:

return fal se, "assignee", "W have failed, assignee is not ok";

The first field tells us that we have failed, the second indicates the field, the third is the message that will be set on the user interface. For the
moment, the filed name must be a "bare" name. That means that it should comply with the name given to the HTML objects displayed (e.g: for
customfields it will be customfield_xxxxx). One can easily inspect the HTML source of the edit screen to see the "bare" name of a field.

For condition:

...

return false; //to signal that condition is not fullfilled.

Just tell JIRA this condition is not fullfiled.

For postfunctions:

...

return ends the program, any values are ignored.

Note

When writing postfunctions, conditions or validators for the "Create issue" transition, make sure that the SIL program is the last step of

the transition. This is necessary because we need JIRA to create the actual issue and save it to the database using the input
parameters before we can access it

Note
In general, it's a good idea to place your postfunctions after all standard postfunctions.

Al Conditions [1] Validators [0)

01 Add a new post function 1o the unconddional resull of the franstion

The Resalutlon of the issus will be cleared.
Edil | Mowve Down | Delele

THEM

Sat issus stalus to 1ha linked status of the destination workflow s1ep
|— THEM

Adid a cornmerd 10 an @2ue § one i$ erlered duning & Lansilon.

THEM

Lipdste change history for an issue and stone the issue in the database
— THEH

Re-index & issue 1o keep indexes in sync wath the database.
THEM

Firg 2 Wark Started On lsswe gvent that can be processed by the listengrs
Edil

THEM
This will run the test SIL program

Tha (e ol poof plagiim o fleind bd. C\rathors'dilprgrins o &
S iy 5IL program wich prints che log

Edit | lowa Lip | Dalata

See also:

JIRA Documentation: Configuring Workflows

JJUPIN Tutorials

Transition View

This page is restricted since I'm not sure whether we should keep it or not.

On this page:
® Introduction
® Editing Code
. Highlighting
® Auto-completion
N Indenting
. Search and Replace
® Checking the Program
L]

Changing the Default Save Path
See Also

http://confluence.atlassian.com/display/JIRA/Configuring+Workflow
https://confluence.kepler-rominfo.com/display/TR

Introduction

The user-friendly interface offers a number of visual aids that will help you write complex SIL programs in no time.

Editing Code

Help Tip
When writing SIL programs, click the Help! button for a shorter version of this guide.

Highlighting

SIL-specific syntax highlighting can considerably improve the readability of your code.

Update parameters of the (k) SIL Post-function Function for this transition.

Update parameters of the (k) SIL Post-function Function for this transition.

Goto: Flugin configuration | Wiorkflow Mewer |

Name: Punnamed SIL?

The file of your program iz stored as: C:\Program Fil WIRALZ. il i s | Helpl

Click here o changs the path

Sil code: CHECK Search Feplace || Replace All

function increment (number a){
& = a + B
ifi a == z2) {
return 1;

}
printikey);
return a;

10 function doSomething(string =, number nl, number [] nZ, boolean flagy, string [] oneMore){
11 return;
12}

14 number b = 0;
15 number ¢ = increment (b):
16 princ(h):
17 print (o)

19 date d = increment(Z);
20 print (d);

22 boolean hl = increment (2);
23 print(bl):

There are four types of highlighting:

1. keywords - words like if, do, while, else, return, etc. are colored in brown
2. datatypes - datatypes like string, number, boolean, etc are colored in blue
3. constants - numbers, strings, etc. are colored in green
4. brackets - when the cursor is near a bracket, its background will become green or red depending on whether that bracket has a closing
pair or not.
function increment (number a4 function increment (number =) I
a=a+ 1: a=a + 1:
if(a == 2] | if{ a == 2} {
return 1: return 1;
* }
printifkewy) : print (kewy)
return =; return a;
h

Auto-completion

The SIL Editor also offers auto-completion capabilities by pressing Ctrl+Space.

CHECK [

function increment (number a) {
a a + 1;

if (a == 2] {
return 1;

Search |

print (kevy):
return =

i

function
return;

doZfomething (string =, number nl, number [] n2,

12|}
mumber b

mumher o
print (k)

o
increment (k) ;

17| printic);

15

19| for (string user in watchers) {

20 string name = userFullName (user):
21 print{(l.:

22|}

23

24 date d

25| print (d)| C

26 b

27 hoolean -

28| print (b doSomething

29 increment

g? addComment(issue, usemame, comment)
33 addElernent(array, elerm)

33 addElementlNotExist{array, elem)
gg arrayAddElement(array, elem)

38 Y I i
37

38

39

40

41

hoolean flag, string oneMore]

Feplace | Replace All

The list of suggestions contains standard variables, routines as well as UDRs and local variables defined up to that point. The scope of the
variables is also taken into account. In the example above, you can see that the user and name variables are defined in the for statement, so
their scope is the for block. Variables that are not in scope (for example the parameters of the doSomething() function) will not be shown in the
list. Therefore, if you write outside the for block, variables name and user will not be shown in the list.

Another useful feature is the dynamic population if the suggestions list and the auto-selection if the list has only one entry.

{
userFul lName (user)

for [(=string user in watchers)
string namne
printiarraydl :

date 4
print(d):

incr

hoolean bl
printibl):

increment (2]

for (string user in watchers) 1
gtring name = userFulllNagne (user)
printifegh oo
addComment(is Username, cormment]
date a = | 3addElementiarray, elem)
printid) ;| =addElementiMaotExistiaray, elem)
arrayAddElement(array, elemn)
gggig?ﬂﬁ arrayAddElermentiNotExist(array, elern)
arrayDeleteElement(array, elern)
arrayDeleteElementAtiarray, index)
arrayElementExists(array, elem)
arrayGetElement(array, index)
arrayzetElementiarray, index, elem) |
Tip

Notice that the suggestions list is NOT case-sensitive.

Note

UDRs and variables defined inside programs included with the include statement, will not be visible in the suggestions list.

Indenting

Selecting a whole block of code and pressing Tab will indent it further to the right. To decrease indentation (move it to the left), select the block

and press Shift+Tab.

Search and Replace

https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=SIL&title=_Standard+Variables+-+TBD
https://confluence.kepler-rominfo.com/display/SIL/Routines
https://confluence.kepler-rominfo.com/pages/viewpage.action?pageId=21693462
https://confluence.kepler-rominfo.com/pages/viewpage.action?pageId=21693462
https://confluence.kepler-rominfo.com/display/SIL/Inclusions

The SIL Editor also offers search and replace capabilities using the panel on the upper side of the editor.

[y
L LV B W O YRR S

e
[y Xy

=
e

CHECK increment

function increment (number a) 4§
a=a + 1;
if| a == 2] {
return 1;
H
print (key) :
return a;

}

function doSomethingistring =, number nl,

return 1;
i

numher b
numher o
print (k)2
print{c):

0:
increment (k)

for(string user in watchers){
string name = userFul lName [user);
print (arrayad) ;

}

date d = increment(Z):
print (dj:

hoolean bl =
print(hl);

increment| g H

Search inc

number [] nd,

Feplace || Replace All

hoolean flag, string [] oneMore) !

Notice that all the occurrences of the searched term are highlighted in yellow. You can replace the current occurrence (highlighted in blue) by
pressing Replace or you can replace all of them using the Replace All button. You can cycle through the search results by repeatedly pressing S

earch.

Tip
To un-highlight search results press Esc.

Checking the Program

To help you through each step of writing a SIL program, the editor also offers a live checking capability using the CHECK button.

CHECE,

function increment (mumbe
a = a + 1:
if|[a == 21 |
return 1:
B

nrint (ke =

ny i I R SN

Feel free to use this to check for errors at any time.

If the program is correct, a message written in green will apprear saying "Syntax Ok.". Otherwise, an error written in red and containing detailed
information will appear. You will also notice that if there are errors the line where they occurred will be highlighted in red.

CHECK Search

dyntax Ok! ipncrement (number a){
a=a + 1;
ifi a == 2) {
return 1;

Feplace || Replace All

¥
print (kevy);
return a:

i
function doSomething(string s, number nl, number [] nZ, boolean flagy, string [] oneMore){

return 1;

i

mumher b
number <
print (k)
printic):

o;
increment (k) ;

for (string user in watchers){
string nswmwme = userFul lName (user) ;
print (name) :

i

date d = increment(z);
print(d);:

boolean bl = increment(2);
print(bl);:

L 0 D D D [B B B B Bt b 2 2 2 2 2
QWM -Imndb W= OWN0m -1 e e = 000 -1 e b

Tip
To discard the error naotifier, just click it.

Changing the Default Save Path

L0 00 -] (0 L0 B

CHECK

Encountered " "print "7 at line
a=a+ 1;
if{ a == 2} {
return 1;
i
print (key)
return a:
i

function doSomething (string
return 1;

number b

mumher o

print (k)
printic);

o:
increment (b)

for (string user in watchers)
string name = userFulllName
print (name) ;

i

date d = increment(2):
printid):

bhoolean bl = increment(2Z):
print(bl);

When editing or creating a new condition, validator or post-function, you will notice a link saying "Click here to change the path". By default,
JJupin saves all the programs in a (configurable) folder, but you also have the ability to select a different one. By clicking on the link, you will be

presented with the following view:

Tunnamed SILY

Click here to change the path.

Fi= CAProgram FilesbAtlassianJIRA 4.3, 4\home
= Eh
= Chsilprograms

The file of wour program is stored as: C:APregram Files'laszian'dIRA 4.2 Phomesilprogamstinclude swannamed _16. =il

Here you can choose an already existing folder to save your file into and even create and delete new ones.

The name of the file your program will be saved as is calculated by removing any invalid characters from the program name and appending a

version number at the end.

Note
For best experience, we recommend Google Chrome or Mozilla Firefox.

See Also

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

Note: Our SIL editing capabilities are based on a modified version of CodeMirror.

Workflow View

Workflow View

This view will help you browse through your workflow without having to open the program every time to see what it does.

All Conditions (1) Validators [0)
0 Adid a new post function to the unconditional result of the transition.

The Resolution of the issue will be cleared.
Edit | WMove Down | Deleta

— THENM

Set issue status to the linked status of the destination workflow step.
— THEM

Add a comment to an issue if one is entered during a transition.

— THEN

Update change history for an issue and store the issue in the database
— THEM

Re-index an issue to keep indexes in sync with the database.

— THEM DS

Fire 3 Work Started On Issue event that can be processed by the listeners.
Edit

— THENM

Thig will run the Funnamed SIL? SIL program

The file of your program is stored as: C@ahomelsiprogramswnnamad_1 il
Simy =il test

Saved, but with errors.

Edit | Move Up | Move Down | Delete

® On the first line we have the name of the SIL program

® The second line shows the path of the file which contains the actual code.

® After that, you have a short description of the program, which you can write by commenting on the first lines (max. 3 lines) in your code.
For example, the program you see on the right contains "//Your SIL code should go in here" on the first line.

® Finally, you have the error notifier which tells you if the program is correct. If there are any errors, open the program for a more detailed
description of the cause. If the program is correct, this line will be blank.

Workflow Viewer

Workflow Viewer

Displays all information needed for a workflow or a draft workflow, (optional) associated to a given project. To get access to workflow viewer, you
have to be an administrator.

Usage

http://codemirror.net/

Navigate to Administration Page Administration -> Add-ons -> Workflow Viewer.

Main admin page Kepler parameters for the Workflow Viewer

Jira Projects: Jira Workflows:

Database Custom Field
| v

Group User Picker
JJUPIN
Workflow Viewer
SIL Manager
SIL Services
SIL Listener
Custom Fields

Rights DNA

You can choose the JIRA project to see the associated workflows, including draft workflows (if any), for each issue type associated OR you can
choose directly the workflows or draft workflows to display all information about.

The report look like this:

Kepler parameters for the Workflow Viewer
Jira Projects: Jira Workflows:
PRJ_TEST ¥ | ATestWorkflow [New Feature, Bug] » | Show All SIL programs
Initial ~ Transition Final Conditions Input Data Validators Post Functions
State State
Create Open - Iasue Typa(s): {Bug, * Only users with Create lssues permission can * Creates the issue originally.
lssue Mew Featurs] execute this transition * Fire a lssue Created event that can be
* “Vahdator AssignByLoad, See EX\Program processed by the listeners
Default Screen Files\Atlassian'Application Data 5.00JIRA * Post Function CheckEmail. See C:jira
‘silprograms\AssignByLoad.sil ‘home'silprograms CheckEmail.sil
Fiald Tab show show
* Summary
(summand
* |ssue Type
(issuetype)
* Security Level
(secunity)
* Assignee
[assignes)
* Description
(dhascription)
Cpen Start In “Only the assignee of the * Post Function unnamed SIL?. See
Progress Progress issue can execute this Cijira‘home'silprograms
transition. " ‘wnnamed_2.sil
show
* The resolution of the issue will be set to
® Sat issue status to the linked status of
the destination workflow step
* Add a comment to an issue if one is
entered during a transition.
* Update change history for an issue and
store the issua in the databasa.
* Re-index an issue to keep indexes in
sync with the database
= Fire a Work Started On Issue event
that can be processed by the listeners.
& Post Function email, See Ctjira
‘home'silpregrams'email.sil
show
® |[nitial state - indicates the initial step name
® Transition - the name of the linked status
® Final state - the destination step name
® Conditions - the text representation of the conditions tree including SIL Conditions and their detailed information
.

Input data - the input screens when executing transitions. An input screen can contain multiple tabs and the information displayed
contains all input data, e.g. Custom Fields names and the associated IDs
® Validators - the list of validators on the current transition, including SIL Validators and their detailed information

® Post functions - the list of post functions on the current transition, including SIL post-functions and their detailed information

At the end of the report you'll find the additional information about the Validators, Conditions and Post Functions present in the edit or view
screens included in the issue screen scheme, associated to the current issue type:

- Wiew lssue - -

- Edit Issue - -

Issue Type(s): [Bug,
New Feature]

Default Screen

Field Tab

* Sumrmary
[summany

* |ssue Type
(issuetype]

® Security Level
[=ecurity)

* Assignes
(assignes)

* Description
(description)

fssue Type(s): [Bug,
Mew Featura]

Default Screen

Field Tab

® Summary
(summany)

* |ssue Type
(issuetype]

® Security Level
[=ecurity)

* Assignes
[assignee)

* Description
(description)

Info

If there is no project selected for workflow viewer, then there will be no associated issue type to a given workflow. So there will be no
such issue screen scheme associated and the information about the edit or view screen will be missing.

When clicking on Show All SIL programs you will see the contents of all SIL programs associated to the Validators, Conditions and Post
Functions for each transitions. You can also show the contents of each SIL program by clicking the show link near the SIL indicated location. You
can collapse all the SIL programs at once by clicking the Hide All SIL programs link, or one by one by clicking the hide link for each of them.

Jira Projects Jira Workflows
PRJ_TEST v | ATestWorkflow [MNew Feature, Bug]
Initial ~ Transition Final Conditions
State State
Create Open
lssue

Kepler parameters for the Workflow Viewer

» Show Al SIL programs

Input Data

Issue Type(s): [Bug,
few Feature]

Default Screen

Field Tab

* Surmmary
(summan

* |ssue Type
(1ssuetyps)

* Security Level
(secunty)

» Assignee
(assignes)

= Description
(descnption)

Validators Post Functions

* Only users with Create lssues permission can execute
this transition.

“alidator AssignByLoad. See E:\Program
Files\Atlassian Application Data 5.0 JIRA
‘silprograms'AssignByLoad.sil

hida

string|] priMembers = projectembers(project);

string minlser,

number minlssues = -1;

number issuesumber = -1;

string query = "project = " + project + " AND status in
(Open', In Progress’, Reopened) AND assignee =
string jql,

® Creates the issue orginally.

® Fire a Issue Created event that can be
processed by the listeners

= Post Function CheckEmail. See
Chjirathome'silprograms
CheckEmail.sil
showe

for (string user in pptembers) |

jgl = query + user;

issueshumber = arraySize(selectissues(gl));

if ((minlzsues == -1) || (issuesNumber < minlssues)) {
minlssues = issuesMumber,

minlser = user;

]

!

assignee = minlser,

SIL Runner Gadget

Important!

Since JJUPIN 3.0.8, you can now customize the gadget to be more user friendly, asking parameters more nicely. See more details her
e.

Another useful feature of JJupin is the ability to randomly run SIL scripts on demand using the SIL Runner Gadget. This allows you to configure a
list of scripts that can be run at any time directly from your Dashboard.

Important!
Bare in mind that scripts ran this way do not have an issue context! Therefore, constructs and keywords like 'key' do not have a

meaning here (they are undefined!). You need to first select the issues to work with, and prefix any standard variables with the issue
key!

Configuration

The configuration screen is only available to JIRA Administrators and System Administrators and allows them to manage the list of available SIL
scripts. They can add and delete scripts or edit the parameters of a runnable SIL script.

G) Successfully updated program Start a war - params

Name Execution Script Parameters Script Actions
test ..plication DataWJIRAG 4 B\silprogramsestRules.sil Mot configured Edit| Security |
Delete
group ...plication Naot configured Edit| Security |
Data\JIRAG.4 B\silprogramstdoMothing.sil Delete
Start a war - _.ation . tion Edit| Security |
params DataWIRAG 4 Bisilprograms'startawarexec.sil DataWIRAG 4 8\silprograms\startawarparam.sil Delete
Start a war _.plication Data\JIRAS 4 8\silprograms'startawar sil Mot configured Edit | Security |
Delete

+ Add Daone

SIL Runner Gadget

Name Start a war

A suggestive name for the program

Description Start a war

A detailed description of what the program does and maybe some usage tips.

Execution Script Select a folder Q

& silprograms

E cf existsil
httpPost_json_sil
httpPost_params.sil
Ifrestrict.sil
sqlCallStoredProcedure. sil
startawar.sil

rFrrrErFr

Selectthe file containing the SIL scriptto run
Parameters Script Select a folder Q

i silprograms

Select the file containing the SIL script for input parameters

Save Cancel

To add a script to the runner you must give it a name, description and select an already existing file containing the script.

The gadget also offers the ability to restrict script usage to specific users or groups by choosing a security option:

SIL Runner Gadget

Security Rules @& User: admin L]
fa% Group: tank-lovers i
a1 Project: TEST Project Role: Users i

Security ‘““Public ‘2User “2Group '®Project role

Choose the security level. Only the selected entity and administrators will be allowed to see and run the script.

Project | TEST ¥

Select the projects which are allowed to see and run the script

Project role | Users * <+ Add

Select the project roles which are allowed to see and run the script

Save Cancel

Public - the script will be available for any user

Group - the script will be available only if the currently logged in user is a member of the specified group (will display a group picker)

User - the script will be available only if the currently logged in user is the same as the specified one (will display a user picker)

Project role - the script will available only if the currently logged in user is in a specific role on a specific project (will display a project

picker) - (available since JJUPIN 3.0.8)

Info
To edit the actual scripts, please use the SIL Manager.

Usage

Example

SIL Runner Gadget

Program | Start a war v

Select the program to run

Description None

Parameters tanks 6121]
infantry 15246 (]
rockets | a big one|]

Add Parameter

Run!

When you select a script from the list, its description will automatically be filled in below.

The Parameters field is used to pass values into your SIL program. To add a parameter click the Add Parameter button.

Parameter names must be unique, otherwise the most recent definition will overwrite previous ones. This includes parameters with no
name.

The parameters will be passed into the program using the argv variable. The values will be available using a construct like argv["parameter_na
me"] or argv[position]. For the above example, the number of rockets can be retrieved using argv['rockets"] or argv[2].

Tip
Parameters can be reordered using drag and drop.

Once you run the script, the program console will be displayed.

SIL Runner Gadget

Reset

Console

Running script Start a war

Preparing to start a war...

Building tanks...

Built 8121 tanks.

Gathering infantry...

Gatherad 15248 brave men.

Fueling rockets...

a big one ready.

Dispatching orders...

Done. Program retumned: Good job! The world is now at war!

You can use the runnerLog routine to print info in the console as the program runs. Note that the console buffer is limited to 512 lines
every ~0.5 sec and the console will only display the latest 512 lines.

Example code

runnerLog("Preparing to start a war...");

runner Log("Bui l di ng tanks...");
runnerLog("Built " + argv["tanks"] +

tanks.");

runnerLog("Gathering infantry...");
runnerLog("Gathered " + argv["infantry"] +

brave nmen.");

runner Log(" Fuel i ng rockets...");
runner Log(argv["rockets"] + " ready.");

runner Log(" Di spatching orders...");
return "Good job! The world is now at war!";

Tip
You can return as many values as you need, regardless of their type.

Parameters in SIL Runner Gadget

Parameters in SIL Runner Gadget

Since JJUPIN 3.0.8, SIL Runner Gadget can be customized in a much user friendly way, asking parameters more nicely.
In order to configure such an entry, you will need to set up the following components:

Name - the name of the configuration

Description - the description of the configuration

Execution script - the script that will be executed

Parameter script - an optional script that will dynamically insert advanced parameter fields on the configuration's run screen.

If no parameter script is given, the user will be able to add simple input fields for text parameters (we maintained the old
functionality).

MName | Start a war - params

A suggestive name for the program

Description | KABOOMI

A detailed description of what the program does and maybe some usage tips.

Execution Script || gaject 3 folder Q

oW
15
(T

| |

map.sil

param.sil
sil.properties
startawar sil
startawarexec.sil
startawarparam.sil
test-aliases-2_sil
test-aliases sil

rFrrFrrFFPFFFRFrP

Selectthe file containing the SIL script to run

Parameters Script ~ct a folder Q

w
1]
D

param_sil
sil.properties
startawar.sil
startawarexec.sil

startawarparam._sil D

FrrEFFFF]

test-aliases-2 sil

| 2

test-aliases.sil
test.sil

| 2

Selectthe file containing the SIL script for input parameters

Save Cancel

Example

The execution script is the script that will be executed. If there are any parameters declared in the parameter script, their values will be received
and interpreted here. In order to get the values of the parameters, you will need to use the parameter retrieval routines.

https://confluence.kepler-rominfo.com/display/SIL30/Parameter+Retrieval+Routines

In our case, the execution script uses the runnerLog routine and can return as many values as you need, regardless of their type.

...

Example code

date start_date = gadget_get Dat eVal ue(argv, "Start Date");
string tanks = gadget get Si ngl eVal ue(argv, "Tanks");
string infantry = gadget get Si ngl eval ue(argv, "Infantry");
string rockets = gadget _get Mul ti Val ues(argv, "Rockets");
runnerLog("Preparing to start a war...");

runnerLog("The war will start at this date: " + start_date);
runner Log("Bui |l di ng tanks...");

runnerlLog("Built " + tanks + " tanks.");

runnerLog(" Gathering infantry...");

runnerLog("Gathered " + infantry + " brave nen.");
runner Log(" Fuel i ng rockets...");

runner Log(rockets + " ready.");

runner Log(" Di spatching orders...");

return "Good job! The world is now at war!"

The parameter script contains the declaration of the parameters that will be used in the execution script. In order to declare the parameters you
will need to use the input type routines.

...

Example code

gadget _createDatePi cker("Start Date", currentDate(), true, "Choose a start
date");

gadget createl nput (" Tanks", "500", true, "The nunmber of tanks");

gadget _createlnput ("I nfantry”, "1600", true, "The nunber of tanks");

gadget _creat eCheckboxG oup(" Rockets", {"A big one", "Alot of small ones"},
"" false, "Do you want to use rockets?");

The parameters can be set to a default values, which can be edited before running the execution script. Using the scripts above, the SIL Runner
Gadget will look like this:

https://confluence.kepler-rominfo.com/display/SIL30/Input+type+routines

SIL Runner Gadget

Program Start a war - params

Selectthe program to run
Description KABOOMI

Start Date” | 20/Augi15
Choose a start date
Tanks” | 6520

The number of tanks

Infantry” | 15246

The number of tanks

Runt

Rockets A big one WA ot of small ones

Do you wantto use rockets?

The execution of the script above produces the output below:

SIL Runner Gadget

Console

Running script Start a war - params

Preparing to start a war...

The war will start at this date: 2015-08-20 00:00:00
Buiding tanks...

Built 8520 tanks.

Gathering infantry...

Gathered 15248 brave men.

Fueling rockets...

A lot of small ones ready.

Dispatching orders...

Done. Program retumed: Good job! The world is now at war!

Live Fields

Live Fields

You want to restrict some users visibility on issue fields? Or you want to change issues fields values automatically when a field value changes?

Or, you just want to execute your own javascript code? Now, you can do this with Live Fields.

See how Live Fields work.

How 'Live Fields' work

Live Fields
What's the idea?
Screens where we can use Live Fields
Example
® Writing the code

® Create a Live Field Configuration
® Inshort:
® Result:

® Let'stestit!

Live Fields

You want to restrict some users visibility on issue fields? Or you want to change issues fields values automatically when a field value changes?
Or, you just want to execute your own javascript code? Now, you can do this with Live Fields.

Live Fields is a JJupin extension that contains several routines for SIL used for example to hide, disable or set the values for JIRA fields. This
actions happen automatically, while editing or viewing the issue.

You can call also the Live Fields routines from postfunctions, and not only from the main configuration script or hooks!

What's the idea?

To understand how Live Fields work,we have to define some notions first:

® An action is the action executed on the screen. It can be hide, show, disable, etc; each action can be called from SIL using its

corresponding routine (IfHide, IfShow, IfDisable, etc)
® A hook script (or, if you prefer, the callback script) represents a SIL script file that is executed when an event is triggered. You can

create a hook using the IfWatch routine.
® The main script (or configuration script) is the initial script executed when the view issue / edit issue is called. This is actually your

entry point in JJupin Live Fields.

Since we like UML, please take a look at the following sequence diagram:

Live Fields

JIRA UI Live Fields SIL Script Engine
[Initial Load]
Display Page
Display Pa
IJIRA Page load '
ts

LF initial trigger
gge >

Retrieve the results

Retrieve LF configuration >
Execute initial script
Register watched graphical elements

Retrieve hook
-
Execute Hook
Register watched graphical elements

www.websequencediagrams.con

{

Apply 15 resul

P

[T [Process User Interaction]
Page Action({Mouse/Key Events)

Pass the friggered event >

Apply 1S results

2

As you can see, the sequence of operations is actually very simple

“{

1. When the JIRA issue page is loaded the Live Fields Configuration for the issue project is retrieved and the Main Script is executed.

Remember: the Main Script represents the SIL Script file from the Live Fields Configuration of the issue project. The Main Script co
ntains the actions and the hooks that will be executed every time an issue page is loaded. The main script can be associated with
many projects, to ease the configuration for projects having similar screens. Not all pages in JIRA trigger Live Fields main script (see
below).

2. After the Main Script is executed, the hooks will be registered and the results will be sent to the browser where the actions will apply.

Remember: An action is represented by the live fields routines that changes the fields state, like IfHide/IfShow, IfDisable/IfEnable.
A hook represents a SIL Script file that is executed when an event is triggered; hooks are created using IfWatch routine.

3. When an user interacts with an element (JIRA field) that has a hook registered for it, the event is triggered and the Hook Script is executed.

Take care: The Hook Script can also contain actions and hooks. The difference is that the actions from the Hook Script are
executed only in the current screen (the screen where the event was triggered).
Screens where we can use Live Fields

It is of paramount importance to understand that Live Fields can only be used in certain screens. You cannot use Live fields for the administration
pages of JIRA, for instance (we could do it, but has really very little importance in our mind ..)

The following table summarizes the screens loading the Live Fields main script (configuration):

Screen Screen Notes
category
Issue View issue Is the normal screen for viewing the issue. With the introduction of inline edit, please see the note
screens below
Edit issue Here you should be able to implement on-screen logic, e.g. if the customer importance combo-box

goes on important, increase priority.
Create issue Same comment apply here
Transition screen

Issue Issue navigator Issue navigator screens are supported as the above
Navigator

Issue
navigator->Edit

Issue
navigator->Transition

As a general note, you should not worry if you're requesting an action for a field that is not on the screen. Live Fields is smart enough to skip over
the non-existent fields.

If necessary, arbitrary javascript, residing in the silprograms folder on the server, can be executed on any above screen. However, try to
minimize the amount of javascript, since it makes your JIRA install non-portable across versions of JIRA.

Example

Let’s take the following example for you to understand better the Live Fields concept. Let’s say you want to set the priority of the issue at Major
when the summary contains the "important” word.

Writing the code
First of all, let's create the Main Script.
Go to Administration -> Add-ons -> SIL Manager.

Click the silprograms folder and the New-> New file button. Create a new SIL file and name it MainScript.sil like in the image below.

o New > SFEdir ‘S Refresh | @ CHECK X Save
- 1
& silprograms

B | MainScript sil v %

This will be the Main Script and we will configure it later.

In the MainScript.sil file that you create write the following code.

MainScript.sil

I fWatch("sumary", {"summary"}, "HookScript.sil" , {"keyup"});

When entering on the issue page, the MainScript.sil will run and attaches a listener for the keyup event, for the summary field. When the event is
triggered the script from the HookScript.sil will run.

Next, let's create the HookScript.sil file in the way you created the MainScript.sil. For our example, you should write the following code in the Hoo
kScript.sil file:

HookScript.sil

if (contains(argv["summary"], "inportant”)) {
I fSet("priority", "Mjor");
| f Showi el dMessage("priority", "Priority changed", "INFQO');

Info
See more information about managing your SIL Scripts.

Create a Live Field Configuration

So, we created the two scripts, but before testing it we have to create a Live Field Configuration and associate it to a project.
To do this you have to follow the next steps:

® Go to Administration -> Add-ons -> Live Fields

Blitz Actions Live Fields Configurations
JJUPIN

Here you can manage all your live fields configurations.
fdvance L oaiy =1 Add Configuration

Workflow Viewer

SIL Manager
SIL Services
Iftest1 I} C:\Program Files\Atlassian\Application Data\WJIRA5.1.T\silprograms'LiveField2.sil Edit | Associate | Delete
SIL Listener
3 Iftest C:\Program Files\Atlassian\Application DataWIRAS 1. TsilprogramsiLiveField1.sil « PRI® Edit | Associate | Delete
Custom Fields o TST
Live Fields
Iftest2 C-\Program Files\Atlassian\Application Data\JIRA5_1.TisilprogramsiLiveFieldTest sil * PPV ® Edit | Associate | Delete

® Click the Add Configuration button

® In the displayed dialog box you have to enter the configuration name and description and you have to choose a SIL File for the Live
Fields Configuration. As we said before, the Main Script represents the SIL Script file from the Live Fields Configuration, so let's choose
it for our configuration:

Add Live Fields Configuration

Name * LiveFieldConfig

Provide a name for the configuration.

Description My first Live Field Configuration

SIL File C-\Program Files\Atlassian\Application Data\JIRAS 1 Tisilprograms\MainS
Choose a SlL file for the configuration from the file tree below.
iz C:\Program Files\Atlassian
Elz= silprograms

[LiveField1_sil

[LiveField2 sil L
[£] LiveFieldTest sil

SlLtesting.incl

[ScriptHide js =

| »

m

Add Cancel

® Click the Add button and the Live Field Configuration will be created

LiveFieldConfig My first Live Field Configuration C:\Program Files\Atlassian\Application Data\JIRAS. 1. T\silprograms\MainScript. si

| Edit | Associate | Delete

®* Now, you have to associate this configuration to a project. To do that, click the Associate link.
® From the displayed dialog you can choose the project(s) to associate the configuration with.

LiveFieldConfig My first Live Field C:\Program Files\Atlassian\Application Data\JIRAS 1. Tsilprogramsi\M; =
Configurati . "
it Associate Project

Project | — Select a project - -

— Select a project -

TST - Test
TP - TestPrj

TES - TestPrj1
PRJ - TestProj

LiveFieldConfig My first Live Field Configuration C:\Program Files\Atlassian‘\Application Data\JIRAS.1.T\silprograms\Main Script.sil o PP &

Edit | Associate | Delete

In short:

You created two scripts, the MainScript.sil and the HookScript.sil.

You created a Live Fields Configuration that contains the MainScript.sil and associated it with a project (with ProjPM, in our case).

Result:

Every time we enter on an issue page of ProjPM project, the MainScript.sil is executed and the hook is registered. When we edit the issue
summary, the keyup event is triggered and the HookScript.sil is executed.

Info
You can find here more information about Live Fields Configuration.

Let's test it !

On the edit screen of the issue you start typing the summary for the issue. Every time the event keyup is triggered a call to the server is made
and the hook:.sil is executed. The server will receive the values of the related fields (the second parameter from the [f\Watch routine), in our case

the value of the summary field.

For example, we have the following issue:

Edit Issue . 5% Configure Fields - -

Summary * test

4
@
m

Issue Type ® [€] Bug
Priorty 4§ Minor
Due Date]

We start editing the summary field.

Edit Issue i:g Configure Fields ~
Summary * test im|
Priority 4 Minor

Due Date e

We typed " im", so the event was triggered three times. That means the hook.sil was executed three times, and it received the following values for
summary field: "test ", "testi", "testim". This are the values passed from argv["summary"].

When the summary field will contain the "important" word, the priority will be set as Major and a message will be displayed.

Edit Issue % Configure Fields ~ |

Summary * test important

Priority 4 Major
@ Priority changed

Due Date e %

Info
You can find the Live Fields routines here.

Info
More information about SIL programs in Simple Issue Language documentation.

Supported fields and graphic elements

On this page:
® Supported JIRA fields

https://confluence.kepler-rominfo.com/display/SIL

® Examples

® Supported JIRA custom field types
® Example

® Supported JIRA Software custom field types
® Example

® Events

Supported JIRA fields

Here is a list of JIRA fields supported by Live Fields:

Field

Project
Summary
Type

Priority
Status
Resolution
Affects Version/s
Fix Version/s
Security Level
Component/s
Labels
Environment
Description
Assignee
Reporter
Due

Created
Updated
Resolved
Estimated
Remaining
Logged
Votes
Watchers
Edit Submit

Transition Submit

Explanation

The project name for the issue. Available since v. 2.6.1 (for JIRA 6.x).

The summary field of the issue.
The issue type field.

The priority field of the issue.
The status field of the issue.

The resolution field of the issue.

The affected versions field of the issue.

The fix versions field of the issue.
The security level field of the issue.
The component field of the issue.
The labels field of the issue.

The environment field of the issue.
The description field of the issue.
The assignee field of the issue.
The reporter field of the issue.
The due date field of the issue.
The created field of the issue.

The updated field of the issue.
The resolved field of the issue.
The issue original estimate.

The issue remaining estimate.
The issue time spent.

The vote field of the issue.

The watchers field of the issue.
Submit button from Edit screen.

Submit buttons on Transition screens.

Usage
project
summary
issueType
priority
status
resolution
affectedVersions
fixVersions
security
components
labels
environment
description
assignee
reporter
dueDate
created
updated
resolved
originalEstimate
estimate
timeSpent
votes
watchers
editSubmit

transitionSubmit

Cancel Cancel link from Edit screen, Transition screen, Create screen. cancel
Create Issue Submit Submit button from Create Issue screen.(the pop-up screen) createlssueSubmit

Available since v. 3.0.3 (for JIRA 6.x).

Issue Create Submit

Attach Files

Attach Screenshot

Delete attachments

Attachments

Add Attachments

Manage Attachments

Viewable by

Important!

Submit button from Create Issue screen.(with the Transition screen)

Available since v. 3.0.3 (for JIRA 6.x).

The Attach Files drop-down item from button More from the view screen of an issue.

Also, the drag and drop from all screens of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

The Attach Screenshot drop-down item from button More from the view screen of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

The Delete icon from the View screen of an issue and from the Manage Attachments screen.

Available since v. 3.0.5 (for JIRA 6.x).

The Attachments module from the view screen of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

The Add Attachments icon from the view screen of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

The Manage Attachments drop-down item from Attachments module.

Available since v. 3.0.5 (for JIRA 6.x).

The Viewable By option of the Comment field from View, Edit, Transition screens.

Available since v. 3.0.8 (for JIRA 6.x).

You have to use them in Live Fields Routines with the key indicated in the Usage column of the above table.

Important!

issueCreateSubmit

attachFiles

attachScreenshot

deleteAttachment

attachments

addAttachments

manageAttachments

viewable_by

Create Issue Submit and Issue Create Submit - both of them are used for the Create button from the create screen.

If the button is accessed from an issue then it will appear the Create Issue pop-up and you have to use Create Issue Submit.

If the button is accessed for example from the Manage Add-ons screen, first it will appear a transition screen - you have to access the
Next button if you want to create a new issue. For this situation you have to use Issue Create Submit.

For Create Issue Submit and Issue Create Submit you have to use both of them if you want to control all the Create Issue screens

using live fields.

Tip

Some Live Fields routines can interact with other elements of the issue as well. Check out each routine's page to see any additional
elements it can interact with.

Examples

An example for it would be to hide the Estimated field. You do that, using the IfHide function like this:

| fH de("original Estinmate"); //this will hide the estimated field

The image shows time tracking before hidding the estimated field(on the left side) and after hidding it(on the right side).

Time Tracking =r ~ Time Tracking ahs

Estimated: 1d Remaining: 1d I—
Remaining: 1d E—— Logged: Mot Specified
Logged: Mot Specified

If you want to set the Type of the issue, use the IfSet function like this:

| fSet ("issueType", "Task"); //this will set the issue type with the Task
val ue

Supported JIRA custom field types

Live Fields also supports the following custom fields:

Number Field
Text Field

Free Text Field
URL Field

Labels

Single Version Picker
Version Picker
Cascading Select
Radio Buttons
Date Picker

Date Time

User Picker

Multi User Picker
Group Picker

Multi Group Picker
Multi Checkboxes
Multi Select
Select List

Project Picker

Warning
When using custom field name make sure you don't have more than one custom field with the same name. The action will apply only on
the first created custom field.

Example

Let's say you have a Number Field custom field named count . The custom field id is 10100. You can hide it like:

| fH de("custonfield_10100") //hide the customfield by its id
| fHi de("count") //hide the customfield by its nane

Info
You can also use aliases to apply actions to custom fields. More about custom fields aliases see here.

Supported JIRA Software custom field types

Since JJUPIN 4.0.0, we also support the next JIRA Software custom fields:

Epic Name
Epic Colour
Epic Label
Epic Link

https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=SIL&title=JIRA+instance-independent+programming

Epic Status
Rank

Sprint

Story Points
Flagged
Business Value

Example

Let's analyze the "Epic Link" custom field. The custom field id is 10001. You can hide it as follows:

| fHi de("custonfield 10001") //hide the customfield by its id
| fH de("Epic Link") //hide the customfield by its nane

Events

Watching events seems simple (check If\Watch routine). But what exactly are the events ? The answer to that is actually very simple: all of them
are JavaScript events. We decided to use them directly because

1. People already know these events

2. We wanted to offer you a broad range of events to watch on

3. People may need to add additional JS in the page. Mixing them would mean that the programmer would have to mentally map events
from JJupin to JS and the other way around. Yak!

Now let's see what we can do with these fields and events here.
Accessing the current screen

Availability
This feature is available since

1. JJUPIN 2.5.3
2. katl-commons 2.5.5

Starting from version 2.5.3 of JJupin, the "screen" argument was passed to the Live Fields scripts, so you can easily filter your actions based on
which issue screen you are operating.

Syntax

argv["screen"]

Description

Returns the actual screen on which the current Live Fields SIL script is executed (for the initial script, as well as for any hooked script).

Returns

A string from the following list of predefined values, corresponding to the actual issue screen:

Screen Argument Value
View Issue view
Edit Issue edit

Create Issue create

Create Sub-Task create-subtask

Transition Screen trans_<transition_id>

Support for the "Create Sub-Task" screen is available since JJUPIN 2.5.5 and katl-commons 2.5.8.

You can easily determine a particular transition's id, by checking your workflow administration page. They are listed as: Transition (id).

Here are the Jira's transitions and their correspondent ids:

Workflows
. . Edit
DEMO: Simple Issue Tracking Workflow [EIT | suareo sy 1 prosecT @

@ This workflow was last edited by you at 05/Mar/15 2:01 PM

Diagram | Text Export ~

Step Name (id) Linked Status Transitions (id) Operations

To Do (1) 10 DO Start Progress (11) View Properties
>> INPROGRESS
Done (21)
>> | DONE

n Progress (2) IN PROGRESS Stop Progress (31) View Properties
>> TO DO
Done (41)
>> | DONE

Done (3) [pone | Reopen (51) View Properties
>> T0DO
Reopen and start progress (61)
>> INPROGRESS

Example

This can be useful when you want to apply certain Live Fields actions only on editable screens for example, and not on view issue page.

Let's say that you want the assignee to always be set to user "x" when creating a new issue with a custom field Defect having the value Developm
ent, without letting the user modify it.

At the same time, you want to set by default the current user as assignee whenever it accesses the "Resolve Issue"” transition screen, but keep it
editable.

This can easily be achieved by checking the “"screen” argument and applying the live fields actions on field assignee, based on the argument's
value, in the initial script, as well as in the hook script:

init.sil

i f(argv["screen"] == "trans_5") { i
//on Resolve |ssue screen
| f Set ("assignee", currentUser());

) ;

//set the hook script for the Defect customfield ;

| fWatch("Defect", "Defect", "hook.sil"); i

hook.sil

i f(argv["screen"] == "create") {
//on Create |Issue screen
i f(argv["Defect"] == "Devel oprment") {
| f Set ("assi gnee", "x"
| f Di sabl e("assi gnee");
} else {
| f Enabl e("assi gnee");
}
} else {
/lother functionality based on Defect field value for other screens
here. ...
}
Routines

Standard routines

The standard routines are listed in our SIL space. These routines are available to all our SIL-enabled plugins, namely:

JJUPIN (this plugin)

JJUPIN Agile - with the power of SIL and JJupin for the Agile ninjas

KCF - Kepler Custom Fields - varia CF for your fun time (free)
DBCF - Database Custom Field - The only free plugin getting data from databases

[]
[]
® Blitz Actions - creates a non-transition screen. The companion of JJupin
[]
L]
[]

Kontinuum - Our time-tracking solution

For the technical minded
There is just one routine registry, and that belongs to the katl-commons plugin. This makes sharing of the routines possible among

plugins !

Routines added by JJupin

The following routines are JJupin specific.

Routine Description Syntax
IfHide Hides a field. IfHide(field)
IfShow Shows a field. IfShow(field)
IfDisable Disables a field. IfDisable(field)
IfEnable Enables a field. IfEnable(field)

IfHideAllExcept

[fShowAll

IfShowFieldMessage

IfHideFieldMessage

Hides all the given fields, panels and tabs except the ones given as
parameters.

Shows the given fields, panels and tabs.

Displays a message for the given field.

Hides a message for the given field.

IfHideAllExcept(fields_tabs_and_panels)

IfShowAll(fields_tabs_and_panels)

IfShowFieldMessage(field, message,
messageClass)

IfHideFieldMessage(field)

https://confluence.kepler-rominfo.com/display/SIL/Routines
https://confluence.kepler-rominfo.com/display/JJUPA
https://confluence.kepler-rominfo.com/display/KBA/Kepler+Blitz+Actions+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation
https://confluence.kepler-rominfo.com/display/DBCF/Database+Custom+Field+Documentation
https://confluence.kepler-rominfo.com/display/KNT/Kontinuum+Documentation

IfGlobalMessage Displays a global message. IfGlobalMessage(message,
messageClass)

IfDialogMessage Displays a global message in a dialog box. IfDialogMessage(message,
messageClass)

IfSet Sets a field with the given values. IfSet(field, value)

[fWatch Attach listeners for the given events. [f\Watch(field, relatedFields,
scriptPath[,javaScriptEvents])

IfExecutedS Gives you the possibility to run your own javascript code. IfExecuteJS(jsFilePath)

IfRestrictSelectOptions = Restricts the list of given options from the options of the field. IfRestrictSelectOptions(field, options)

IfRefreshScreen Performs a page reload. IfRefreshScreen()

IfRedirect Redirects to a given URL. IfRedirect(url)

IfinstantHook Executes the given SIL script, passing the screen values for IfinstantHook(relatedFields, scriptPath)

relatedFields as parameters to the script.

IfAllowSelectOptions

Availability
This routine is available since

1. JJUPIN 3.0.2

Syntax

IfAllowSelectOptions(field, options[, triggerChange])

Description

Restricts the list of given options of the field to the list of options given as parameter.

Parameters
Parameter Type Required Description
field String Yes The field to restrict options for.
options String Yes The list of remaining options.
triggerChange Boolean No If set to true, triggers the change event on the field when routine is used.
Example

The following code example restricts anything but Major and Minor from the options of the priority standard field.

| fAl owSel ect Options("priority", {"Major", "Mnor"}); //where field =
"priority" and options = "Major" and "M nor"

If you want to trigger the change event on the field when using IfAllowSelectOptions, you can use the optional triggerChange parameter set to
true:

I f Al'l owSel ect Options("custonfield _10000", {"optionl", "option2"}, true);
/Iwhere field = "custonfield_10000" of type select list, options =
"optionl" and "option2" and triggerChange = true

IfDialogMessage

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfDialogMessage(message, messageClass);

Description

Displays a global message in a dialog box.

Parameters

Parameter Type Required Description

message String Yes The message to display.
messageClass String Yes The message type.

The messageClass parameter can be:

ERROR: will display an error message.
WARNING: will display a warning message.
SUCCESS: will display a success message.
INFO: will display an info message.

HINT: will display a hint message.

Example

| fDi al ogMessage("This is a dialog nessage!", "WARNING');// where nmessage =
"This is a dialog nessage!" and nessageC ass = "WARNI NG'

The message will be displayed like in the image below.

£ This is a dialog message!

IfDisable

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfDisable(field)

Description

Disables the given field.
Parameters

Parameter Type Required Description

field String Yes Specifies the field to disable.

Example

Let's assume that the field issueType once set should not be changed by anyone, but by the admin user. To prevent other users from changing it,
being only able to view it, use IfDisable.

i f(assignee != "adm n") {
| fDi sabl e("issueType");

Known Issues
When updating an issue the values for some of the disabled fields will not be saved. For example, you will not be able to update an
issue that has the summary field disabled.

If you update an issue that has a Text Field disabled, the custom field will not be anymore visible on the issue page because it was
saved with an empty value. This applies to most custom fields.

If a field is disabled and you want to enable it, use the next routine: IfEnable.
See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfDisableTab

Availability
This routine is available since

1. JJUPIN 2.5.12+/2.6.7+
2. katl-commons 2.5.16+/2.6.8+

Syntax

IfDisableTab(field)

Description

Disables the given tab.
Parameters

Parameter Type Required Description

field String Yes Specifies the tab to disable.

Example

If the assignee is not admin, disable the Field Tab from the issue.

i f(assignee != "admin") {

| f Di sabl eTab("Field Tab");

o
See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfEnable

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfEnable(field)

Description

Enables the given field.
Parameters

Parameter Type Required Description

field String Yes Specifies the field to enable.

Example

If the field is disabled for all the users and the user admin, for example, should change the value, use IfEnable.

i f(assignee == "adm n") {
| f Enabl e("i ssueType");

The image shows the enabled field and the value of the assignee field.

|SSUETYF]E*I@ Bug > @ Assignee admin

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

[fEnableTab

Availability
This routine is available since

1. JJUPIN 2.5.12+/2.6.7+
2. katl-commons 2.5.16+/2.6.8+

Syntax

IfEnableTab(field)

Description

Enables the given tab.
Parameters

Parameter Type Required Description

field String Yes Specifies the tab to enable.

Example

If the assignee is admin, enable the Field Tab from the issue.

i f(assignee == "admin") ({
| f Enabl eTab("Field Tab");
)

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfExecutedS

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfExecuteJS(jsFilePath);

Description

Gives you the possibility to run your own javascript code.

Parameters

Parameter Type Required Description

jsFilePath String Yes The script source to run that contains your javascript code. The file is resolved relative to silprograms path.

Example

Let's first create a file which contains the following javascript code:

AJS. $(' #summary-val '). get (0). chi | dNodes[0] . nodeVal ue = "Executing mny
javascript";
AJS. $(' #descri ptionnmodul e'). hide();

| f Execut eJS("hook.js"); // jsFilePath = "hook.js"

For the jsFilePath parameter you can either give the relative path (as in the example above) or the absolute path.
When calling this routine, the javascript code from hook.js is executed.

This will set the summary value on the issue page and will hide the description.

Important
The file designated by the jsFilePath patameter must contain only JavaScript code. Note that this code will be inlined, so DO NOT USE
SINGLE LINE COMMENTS!

var v = "a";
// let's show an alert
alert(v);

So the alert() will never be called.

For the technical minded
The above routine gives you virtually all the power on JIRA Ul. However, this may NOT BE PORTABLE across versions of JIRA.

IfGlobalMessage

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfGlobalMessage(message, messageClass);

Description

Displays a global message.

Parameters

Parameter Type Required Description
message String Yes The message to display.
messageClass String Yes The message type.

The messageClass parameter can be:

ERROR: will display an error message.
WARNING: will display a warning message.
SUCCESS: will display a success message.
INFO: will display an info message.

HINT: will display a hint message.

Example

| f d obal Message("This is a gl obal nessage!", "ERROR'); // where nessage =
"This is a gl obal nessage!" and nessaged ass = "ERRCR'

The message will be displayed on the issue screen like in the image below:

¥XJIRA % {GOTFEEDBACK?] admin i~ Administration

Dashboards i~ Projects i~ [HETEEEES + Create Issue

@ Thisisa global message! A

TestProj / PRJ-10 29 0of 38 A
Return to search %
Task,Bug
& Edit Assign Log Work More Actions ~ Start Progress Resolve Issue Worlkdlow - @ Views ~
Details People
Type) Bug Status: 42 Reopened Assignee admin
Priority § Minor Resaolution Unresolved Reporter admin
Affects Version/s: aa Fix Version/s aa)))
Vote (0} & Watching (2)
Component/s 2aa
IfHide
Availability

This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfHide(field)

Description

Hides the given field.
Parameters

Parameter Type Required Description

field String Yes Specifies the field to hide.

Example

If the assignee is not admin, hide the issue type field from the issue.

i f(assignee != "adm n") {
| fHi de("issueType");

The image shows on the left side that the issue type is hidden and on the right side that the assignee is set to "test 1".

Details

Priority: # Major Assignes: test 1

Now that the field is hidden, you can use IfShow to display it on the issue screen.

Hiding fields and security
Hiding fields on the screen is not secure ! This is not a security solution, the field is present in HTML and can still be inspected via a
simple "Show page source".

This feature is only used to put some logic in the screen !

Additional Fields

Availability
Feature available since JJupin 2.5.2.

In addition to the Supported fields and graphic elements accepted by all Live Fields routines, IfHide can also handle:

Element Field (to be used in routine)
Details Panel details_panel

People Panel people_panel

Dates Panel dates_panel

Timetracking Panel timetracking_panel

Activity Panel activity_panel
Comments Tab comments_tab
History Tab history_tab
Worklog Tab worklog_tab
Activity Tab activity_tab

All Tab all_tab

Add Comment addComment
See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfHideAllExcept

Availability
This routine is available since

1. JJUPIN 3.0.7
2. katl-commons 3.0.7

Syntax

IfHideAllExcept(fields_tabs_and_panels)

Description

Hides all the given fields, panels and tabs except the ones given as parameters.

Parameters

Parameter Type Required Description
fields_tabs_and_panels String Yes Specifies the fields/panels/tabs to hide.
Example

Please note that this routine hides all the elements that are not specified as parameters; so, if you want to show a field, don't forget to
add the tab or panel it belongs to as a parameter.

| f H deAl | Except ("detail s_panel ", "issueType", "priority", "activity_panel",
"comments_tab", "Field Tab", "custonfield_10101");

...

| f Show("det ail s_panel ");

| f Show "i ssueType");

| f Show("activity panel");

| f Show(" conment s_t ab");

| f ShowTab("Field Tab");

| f Show "custonfield 10101");

//for all the other fields, tabs and panels: |fHi de(el enent);

Additional Fields

Availability
Feature available since JJupin 3.0.7.

In addition to the Supported fields and graphic elements accepted by all Live Fields routines, IfHideAllExcept can also handle:

Element Field (to be used in routine)
Details Panel details_panel
People Panel people_panel

Dates Panel dates_panel

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

Timetracking Panel timetracking_panel

Activity Panel activity_panel
Comments Tab comments_tab
History Tab history_tab
Worklog Tab worklog_tab
Activity Tab activity_tab

All Tab all_tab
See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfHideFieldMessage

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfHideFieldMessage(field)

Description

Hides a message for the given field.
Parameters

Parameter Type Required Description

field String Yes The field to hide the message for.

Example

IfHideTab

Availability
This routine is available since

1. JJUPIN 2.5.12+/2.6.7+
2. katl-commons 2.5.16+/2.6.8+

Syntax

IfHideTab(field)

Description

Hides the given tab.

This routine only handles field tab and tabs defined by the user. If you want to hide the tabs from Activity panel, see IfHide routine.

Parameters

Parameter Type Required Description

field String Yes Specifies the tab to hide.

Example

If the assignee is not admin, hide the Field Tab from the issue.

i f(assignee != "adm n") {
| fH deTab("Field Tab");

Now that the field is hidden, you can use [fShowTab to display it on the issue screen.

Hiding fields and security

simple "Show page source".

This feature is only used to put some logic in the screen !

Hiding fields on the screen is not secure ! This is not a security solution, the field is present in HTML and can still be inspected via a

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfInstantHook

Availability
This routine is available since

1. JJUPIN 2.5.6 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)
2. katl-commons 2.5.8 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)

Syntax

IfinstantHook(relatedFields, scriptPath);

Description

Executes the given SIL script, passing the screen values for the specified relatedFields as parameters to the script.

This is especially useful in the create issue screen, where you don't have access to the issue standard variables.

Using an instant hook, you can access in the hook script the screen values for the desired fields as argv|field].

Parameters
Parameter Type Required Description
relatedFields String Array Yes The dependent fields required for the given field.

scriptPath String Yes The script source to run when the event is triggered.

Example

| f1 nstant Hook({"summary", "custonfield 13706", "conponents"}, " hook.sil");

For the scriptPath parameter you can either give the relative path (as in the example above), or the absolute path as: "C:/Program
Files/Atlassian/Application Data/JIRA/silprograms/hook.sil".

/'l hook. sil

if (contains(argv["sumary"],
[fSet("priority", "Critical");
| f ShowFi el dMessage("priority",

"inportant")) {

"Priority changed", "INFQO");

Every time when the initial script is triggered, the hook.sil is executed. When the summary field contains the word “important”, priority field is set to
Critical and a message will be displayed for the priority field.

Edit Issue

3 Configure Fields ~
Summary " Task,Bug importa

3 M

Due Date 13/Jan/13 7

The first image shows the initial value of the priority for the current issue, the next one shows the value it is changed to, after executing the code
from hook.sil.

Edit Issue

i Configure Fields -
Summary * Task,Bug important

#

=

& FPrioity changed

As we said before, the values from the relatedFields are accessed as argv|field]. For multiple values fields like components or affectedVersion
s the value returned is in the following format: vall|val2|val3.

Info

For more information, see How 'Live Fields' work.

IfRedirect
Availability
This routine is available since

1. JJUPIN 2.5.6 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)
2. katl-commons 2.5.8 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)

Syntax

IfRedirect(url);

Description

Redirects to the specified URL.

If the url parameter represents a project or issue key, will redirect to its page, that is "<jira_base_url>/browse/<issue_or_project_key>".
Parameters

Parameter Type Required Description

url String Yes The redirect URL.

The url parameter can be:

a Jira relative path (eg. "/secure/Dashboard.jspa")
aissue key (eg. "DEMO-1")

a project key (eg. "DEMO")

a full path URL (eg. "http://www.google.com")

Example

Redirecting to our Kepler's products site:

...

...

...

IfRefreshScreen

Availability
This routine is available since

1. JJUPIN 2.5.5
2. katl-commons 2.5.8

Syntax

IfRefreshScreen();

Description

Performs a page reload.

Example

This routine cane be used for example to refresh information on view issue after performing an auto-transition when issue is viewed for the first
time:

i f(argv["screen"] == "view' && status == "New') {
autotransition("Mve to Open", key);
| f Ref reshScreen();

Issue is created in status New. When first accessed it is auto-transitioned to status Open and page is refreshed by means of the IfRefreshScreen
routine to reflect the updated info.

IfRestrictSelectOptions

Availability
This routine is available since

1. JJUPIN 2.5.2
2. katl-commons 2.5.3

Syntax

IfRestrictSelectOptions(field, options, [triggerChange]);

Description

Restricts the list of given options from the options of the field.

Parameters
Parameter Type Required Description
field String Yes The field to restrict options for.
options String Yes The list of options to restrict.
triggerChange Boolean No If set to true, triggers the change event on the field when routine is used. Available since v. 2.5.6 for Jira 5.x and v.
2.6.1 for Jira 6.x.
Example

The following code example restricts Major and Minor from the options of the priority standard field.

| f RestrictSel ect Options("priority", {"Major", "Mnor"}); //where field =
"priority" and options = "Major" and "M nor"

If you want to trigger the change event on the field when using IfRestrictSelectOptions, you can use the optional triggerChange parameter set to
true:

...

| fRestrictSel ect Options("custonfield 10000", {"optionl", "option2"}, true);

/Iwhere field = "custonfield 10000" of type select list, options =
"optionl" and "option2" and triggerChange = true

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfSet(field, value, [triggerChange]);

Description
Sets the field with the given values.

This sets the value in the screen only. It does not set the value on the issue (setting it on the issue require direct access to the field)

Parameters
Parameter Type Required Description
field String Yes The field to set the value for.
value String Yes The value to set. It can be a string value or an array with string values.
triggerChange Boolean No If set to true, triggers the change event when IfSet is used on a field. Available since v. 2.5.6 for Jira 5.x and v. 2.6.1 for
Jira 6.X.
Examples

The following code example sets the priority standard field as Major.

I fSet("priority", "Major"); // where field = "priority" and value = "Mjor"

Warning
The value will not be saved in the database. To save value in the database you should do something like:

priority = "Major"; // this saves into the database the value

However, please make sure you're not on the create screen!

As we said before, you can set multiple values to a field that can have multiple values. For example, let's set components field to compl, comp2.

| f Set ("conmponents" , {"conpl", "conp2"});

Warning
You can't set a field if the values are not available for the given field. For example, in order to set components field to compl, comp2,
you have to make sure that compl and comp?2 are valid components for that issue.

If you try to set, for example, issue type field using an array like the code below, IfSet will take into account only the first value from the array. So,
this will set the issue type to "Task".

| f Set ("issueType", {"Task", "Bug"});

| fSet ("custonfield 10000", "updated val", true);

Known Issues
There are some fields, from the list provided in Supported fields and graphic elements, that couldn’t set the value for. These fields are:

® |abels, on Edit, Transition, Create screens;

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

® Estimate (remaining estimate), on Transition screens;

® Votes
® Watchers

On the view screen, when you want to edit a field will be displayed the last value saved for that field.

You can't set fields that are not editable. For example, on the issue view screen you can’t set status or resolution fields.

IfShow

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfShow(field)

Description

Shows the given field.
Parameters

Parameter Type Required Description

field String Yes Specifies the field to show.

Example

If the assignee is admin, show the issue type field on the issue.

i f(assignee == "admi n") {
| f Showm "i ssueType");

The image shows on the left side that the issue type is displayed on the issue screen and that the assignee is set to "admin".

Details
Type: Bug Assignee:
Priarity: Major

adrmin

Additional Fields

Availability
Feature available since JJupin 2.5.2.

In addition to the Supported fields and graphic elements accepted by all Live Fields routines, IfShow can also handle:

Element Field (to be used in routine)
Details Panel details_panel
People Panel people_panel

Dates Panel dates_panel

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

Timetracking Panel timetracking_panel

Activity Panel activity_panel
Comments Tab comments_tab
History Tab history_tab
Worklog Tab worklog_tab
All Tab all_tab

Add Comment addComment
See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfShowAll

Availability
This routine is available since

1. JJUPIN 3.0.7
2. katl-commons 3.0.7

Syntax

IfShowAll(fields_tabs_and_panels)

Description

Shows the given fields, panels and tabs.

Parameters

Parameter Type Required Description
fields_tabs_and_panels String Yes Specifies the fields/panels/tabs to show.
Example

| f ShowAl | ("issueType", "comments tab", "activity panel", "Field Tab");

| f Show"i ssueType");

| f Show(" conment s_tab");

| f Show "activity_panel");
| f ShowTab("Field Tab");

Additional Fields

Availability
Feature available since JJupin 3.0.7.

In addition to the Supported fields and graphic elements accepted by all Live Fields routines, [fShowAll can also handle:

Element Field (to be used in routine)
Details Panel details_panel

People Panel people_panel

Dates Panel dates_panel

Timetracking Panel timetracking_panel

Activity Panel activity_panel
Comments Tab comments_tab
History Tab history_tab
Worklog Tab worklog_tab
All Tab all_tab
See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfShowFieldMessage

Availability
This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfShowFieldMessage(field, message, messageClass)

Description

Displays a message for the given field.

Parameters
Parameter Type Required Description
field String Yes Specifies the field for displaying the message.
message String Yes The message.
messageClass String Yes The message type.

The messageClass parameter can be:

ERROR: will display an error message.
WARNING: will display a warning message.
SUCCESS: will display a success message.
INFO: will display an info message.

HINT: will display a hint message.

Example

| f ShowFi el dMessage(" assi gnee", "Assignee changed", "SUCCESS');

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

On the issue screen, the message will be displayed like in the image below:

People

Assignee

Fanndar

Assignee changed

admin

admin

£ Watching (2)

On the edit screens the message will be displayed like in the image below:

Edit Issue

Summary
lssue Type
Priority
Due Date

Component/s

Affects Version/s

Fix Wersionfs

* Testine Live Fields|

" [@] Bug - | @
& Minor - | @
134Jan/13 r
dda X

Start typing to get a list of possible matches or press down to select.

ad ¥

Start typing te get a list of possible matches or press down to select.

da x

Start typing to get a list of possible matches or press down to select.

| % Configure Fields -

1

m

Assignee] admin 2
Assignee changed
Environment 6utf5u
Updg_te Cancel
[fShowTab
Availability

This routine is available since

1. JJUPIN 2.5.12+/2.6.7+
2. katl-commons 2.5.16+/2.6.8+

Syntax

IfShowTab(field)

Description

Shows the given tab.

Parameters

Parameter Type Required

field String Yes

Example

Description

Specifies the tab to show.

If the assignee is admin, show the Field Tab from the issue.

i f(assignee == "admin") {
| f ShowTab("Field Tab");

Now that the field is shown, you can use IfHideTab to hide it on the issue screen.

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

IfWatch

Availability

This routine is available since

1. JJUPIN 2.5
2. katl-commons 2.5

Syntax

IfWatch(field, relatedFields, scriptPath[,javaScriptEvents]);

Description

Attach listeners for the events that you give as parameters in the function.

If you don’t give any event, it attaches listeners to “change” event (triggered when the issue is updated).

Every time the event is triggered, the SIL script from scriptPath parameter runs.

This SIL script receives the values for the relatedFields and you can use them as: argv|field].

Parameters
Parameter Type
field String
relatedFields Array
String
scriptPath String

javaScriptEvents Array

Required
Yes

Yes

Yes

No

Description
The field to listen.

The dependent fields required for the given field.

The script source to run when the event is triggered.

The events to listen to. It's any JavaScript event (check this list for references)

"change" event

When using the “"change" event on a "labels type" field (Fix Versions, Affected Versions, Labels, Components, etc.), the event will
never trigger when a label is deleted, but only when labels are added. We have noticed that for these fields the “focusin” event closely
matches the behavior expected for the "change" event.

https://developer.mozilla.org/en-US/docs/Mozilla_event_reference?redirectlocale=en-US&redirectslug=DOM%2FDOM_event_reference

Example

| fWatch("sumary", {"sunmmary", "custonfield 13706","conponents"}, "
hook.sil", {"keyup"});

//where field = "summary"”;rel atedFields = {"sunmary",

"custonfield 13706", "conmponents"}; scriptPath = " hook.sil";javaScript Events
= {"keyup"}

For the scriptPath parameter you can either give the relative path (as in the example above), or the absolute path as: "C:/Program
Files/Atlassian/Application Data/JIRA/silprograms/hook.sil”.

/1 hook. sil
if (contains(argv["summary"], "inportant”)) {
[fSet("priority", "Critical");
| f Showi el dMessage("priority", "Priority changed", "INFQO');

Every time when the keyup event is triggered, the hook.sil is executed. When the summary field contains the word “important”, priority field is set
to Critical and a message will be displayed for the priority field.

Edit Issue & Configure Fields ~
Summary " Task,Bug importa

{.:' Minar - k-";

Due Date 13/Jan/13

]
il

The first image shows the initial value of the priority for the current issue, the next one shows the value it is changed to, after executing the code
from hook.sil.

Edit Issue 2 Configure Fields ~

Summary " Task,Bug important

=

Critica -

& Prioity changed

As we said before, the values from the relatedFields are accessed as argv|field]. For multiple values fields like components or affectedVersion
s the value returned is in the following format: vall|val2|val3.

Info
For more information, see How 'Live Fields' work.

Additional Routines

Starting with JJupin 2.5.5, there are additional routines implemented into JJupin, concerning the display on SIL Runner. The Ul has been

dramatically changed (we hope it's for the best!) and now you can put messages in your long-running scripts so you can watch the progress on
the runner.

® runnerLog

runnerLog

Availability
This routine is available since

1. JJUPIN 2.5.5

Syntax

runnerLog(message)

or

runnerLog(message, percent, action) (Since JJUPIN 3.0.10)

Description

Puts the message 'message’ on the console of a runner gadget. This is a special routine making sense only in JJupin/SIL Excel Reporting and
only for the runner. The use of it has no effect whatsoever besides for the runner.

Since JJUPIN 3.0.10, runnerLog routine can also render a progress bar by specifiing the percent we want to be set.

Parameters

Parameter Type Required Description

message string Yes Specifies the message to be put on the runner console
percent number No Specifies the percent to be updated on the progress bar
action string No Specifies the action to be executed (so far, the only action

considered is init_progressBar - to initialize the progress bar;

everything else will be ignored)

Return type

string, can be always ignored

Example

Let's modify the example used here:

The scripts would look like below:

...

execution_script.sil

date start_date = gadget get Dat eVal ue(argv, "Start Date");

string tanks = gadget get Si ngl eVal ue(argv, "Tanks");

string infantry = gadget get Si ngl eval ue(argv, "Infantry");
string rockets = gadget _get Mul ti Val ues(argv, "Rockets");

runnerLog("Preparing to start a war...", 0, "init_progressBar");
+ start_date,

runnerLog("The war will start at this date:
runner Log("Bui l di ng tanks...");
runnerLog("Built " + tanks + " tanks.", 30);
runnerLog(" Gathering infantry...");
runnerLog("Gathered " + infantry +
runner Log(" Fuel i ng rockets...");
runner Log(rockets + " ready.", 90);

runner Log("Di spatching orders...", 100);
return "Good job! The world is now at war!";

brave nmen.", 60);

...

parameter_script.sil

gadget _createbDat ePi cker("Start Date", currentDate(), true,

date");

gadget _createl nput (" Tanks", "500", true, "The number of tanks");
gadget _createl nput ("I nfantry", "1600", true, "The nunber of tanks");
gadget _creat eCheckboxG oup(" Rockets", {"A big one", "A lot of snal

, false, "Do you want to use rockets?");

"Choose a start

ones"},

...

In this case, using the new runnerLog routine, when the script execution is done, the runner will look like this:

SIL Runner Gadget

Console

Running script startWar

Preparing to start a war. ..

The war will start at this date: 2015-09-15 00:00:00
Building tanks...

Built 500 tanks.

Gathering infantry...

Gathered 1600 brave men.

Fueling rockets....

A big one ready.

Dispatching orders...

Done. Program returned: Good job! The world is now at war!

Development

Making the life of the SIL developer bearable

This page is dedicated to you, the developer who needs to accomplish tasks using what we have done.

We plan to do some improvements on the interface, but while you are waiting for them, let us give you some hints.

Log Custom Field - How to use it

Many SIL messages are put directly into the JIRA log. This is becoming a problem, your transition does not get executed, and you would like to
know why.

So here it comes: if you want to display the log messages directly on the issue screen, use Log Custom Field, provided by Kepler Custom Field
plugin.

In order to see the logs which refers to the JJUPIN plugin, you have to install Kepler Custom Field and add a custom field of type Log Custom
Field. We'll assume JJUPIN is already installed.

For more information about how to configure this custom field and how to test it, please see the documentation from here.

Example

Let's create a sil script using the IfSet routine, which sets the value for a JIRA field on the current issue.

save | Delete Fename | Refresh | Show Unused | Cleanup
CHECK | Search |
E"E’C:DIFHESH" Avlassiamii | 3|) rger (roustomfield 110007 ;
sil.perties

| fSet("custonfield 11000");//which is plain wong, we expect 2 paraneters
here

But we expect that this should change the value for a field of type version picker, identified in JIRA by the id: customfield_11000, with the value:
v1 and when we open the issue we see that the value of it is the old one.

“ersion Picker: Y], w2

So now we know something is wrong and we should look in the log file to see what happened, because we don't know what the cause is.

But we have the log custom field on the screen and we know that the log messages will appear as the value for this like in the image below.

Log Custom Field
Tue Feb 12 16:38:46 EET 2013 : DEBUG -Source C:\Program Files\Atlassian\Application DatabJIRAS. 2Asilprograms\fSet. sil is using JDIE 4|
Tue Feb 12 16:35:46 EET 2013 : DEBUG -PARSE begins
Tue Feb 12 16:35:46 EET 2013 : DEBUG -Interpreting YALUE node »>customfield_11000<<, line : 1, column 7
Tue Feb 12 16:35:46 EET 2013 : DEBUG -Interpreting CALL node >>IfSet<<, line : 1, colurmn 1
Tue Feb 12 16:35:46 EET 2013 : DEBUG -CALL >>l{Set<<, parameter list size = 1
Tue Feb 12 16:38:45 EET 2013 : ERROR -[SIL Error on line: 1, colurnn: 1] Indesx: 1, Size: 1
Tue Feb 12 16:38:46 EET 2013 : DEBUG -Printing report: not enabled
Tue Feb 12 16:38:45 EET 2013 : ERROR -Exception while executing SIL program ==C\Program Files\Atlassian'\Application Data\JIRAS 2silprogramsifSet. sil<<
-[Log containg exception stack trace. Please examine it.|

I

To search the messages, please scroll down and look for the messages which refers to the routine to be executed.

It's just easier sometimes to use this field, than to search the log file provided by JIRA.
The log on the screen ONLY contains main / important messages (not everything !) . However, it may reduce the development time
quite dramatically !
The log custom field indicates that the script was scheduled to be executed but encountered an error at line 1 while executing it. And the advice is

to examine the exception stack trace from the log file, but we think that

most probably the syntax is not correct, we search for IfSet routine in the documentation and we discover that we were right about it, so we
change it to:

https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Log+Custom+Field

| fSet("custonfield 11000", {"v1"});//which is correct

Now we go back to the issue and the value for the version picker field is set to v1 like in the image below and in the log custom field the messages
does not contain any error regarding the usage of this routine:

“ersion Picker: vl
Multi Checkboxes: aaa, bbb

Log Custom Field:
IUE FRU 12 10,04, 10 T 2010 . UEDUL -SUUILE L ARTUGEEITT FIESUESSEI-APRICEIUN UEladRAD. 2 IPTUIramnsuioe. si s using Juic B

Tue Feb 12 16:54:18 EET 2013 : DEBUG -PARSE begins

Tue Feb 12 16:54:18 EET 2013 : DEBUG -Interpreting WALUE node ==custornfield_11000<<, line : 1, column 7

Tue Feb 12 16:54:18 EET 2013 : DEBUG -Interpreting WALUE node =="v1"<<, ling : 1, column 28

Tue Feb 12 16:54:18 EET 2013 : DEBUG -Interpreting CALL node »>fSet<<, line : 1, column 1

Tue Feb 12 16:54:18 EET 2013 : DEBUG -CALL >=IfSet<<, parameter list size =2

Tue Feb 12 16:54:18 EET 2013 : DEBUG -Detected field customfield_11000 to be custom field. Rewriting to custornfield_11000
Tue Feb 12 16:54:18 EET 2013 : DEBUG -PARSE ends, no return encountered

Tue Feb 12 16:54:18 EET 2013 : DEBUG -Printing report: not enabled

I

This is only an example of how log custom field is used with JJUPIN.

SIL Programming Warnings

Introduction

What you do when the script you are running doesn't have the expected result? Your first thought is to look in the Log files. But where?

Since JJupin 2.5 and katl-commons 2.5 we came in your help with a powerful tool that is useful when developing new scripts or debugging old
ones.

How to use it

What you have to do? First of all you have to enable this feature. To do this you have to go to Administration -> Add-ons -> SIL Configuration.

SIL Programming Warnings
Enable Waming Report @ OM) OFF

If enabled, will print a report in the loge showing any warnings we found during execution of the script.
This wil be useful especialy when developing new scripts or debugging old ones.

Save

Info
For more information about JJUPIN Configuration, see Administration Page.

How it works

Once you enabled it let's see how it works.
Every time a SIL Script is executed a warning report is created that shows the warnings that were found during the script execution.

Assume we have the following script.

function f(string s){
description = s;

}

f(1);

Running this script will generate the following WARN logs in the Log file.

1.81LProgranningWarning
1.8ILProgranningWarn ing

type STRING. but you are calling it with NUMBER [f1]

[jira.comnons.sil.SILProgramningWarnings] ===

This is the Warning Report that displays, in the first row, the number and the type of the problems that were found during the script
execution.Then, it displays a detailed report of each problem found saying the line of the script that generated the problem and the problem
message.

In our example was found only one problem of type STYLE, at line 5 that warn us about the parameter type we call the f function with.The routine
was expected on the first position a String parameter but we gave it a Number.

There are three types of problems that may occur.
STYLE- a style problem
SERIOUS - a medium problem
FATAL - plain error
Info

You can also have the possibility to view the log messages on the issue screen, using Log Custom Field, provided by Kepler Custom
Field plugin.

Important
Using SIL Programming Warning will not affect your SIL script execution.

What does this script? Sets the description with the value 1.

Look what happens on the issue after the script is executed.

- ProjPM 1 PPM-1
test

& Edit Assign Assign ToMe Comment More Actions = Resolve Issue Close Issue
Details

Type Bug Status &) Open
Priority & Minor (View Workflow)
e Verstinds None Resolution Unresolved

Fix Version/s MNone

Labels MNone
HiddenJobSwitch Mo Perforce job exists for this issue.
versionpicker vers1
Description
1

The description is set to 1.

Let's see another example.

https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation

function f(string s){
description = s;

}

f(1);

nunmber a;

a += 2;

The execution of this script will generate the following warnings:

[1] STYLE. line 5: Progranming s : s th NUMBER [f1]
[2]1 SERIOUS,. line 8: ADD operato 1

Calling SIL Scripts from Remote Systems

® Problem
® Solution 1 - REST
® Step 1 - Create the Script
® Step 2 - Add the Script to the Gadget
® Step 3 - Identifying the Script ID
® Step 4 - Calling the Script
® Solution 2 - SOAP
® Step 1 - Authentication
® Step 2 - Calling the Script

Problem

Complex integrations with external systems might require your JIRA instance to react somehow to external events. And there's no better way to
express "somehow" than using a SIL Script.

Solution 1 - REST

Deprecation
As of JJUPIN 2.5.5 this method of calling SIL scripts is deprecated and no longer supported. Use the Common REST Service instea
d.

Required plugins
You will need the following JIRA plugins:

1. JJUPIN
Level: ADVANCED
The first solution is to use the same REST service that the SIL Runner Gadget uses to call scripts. This requires that the script is first added to the

gadget. We will also use a special user that the external system will use to authenticate against JIRA, and we will restrict the Script from the
gadget to this specific user.

Step 1 - Create the Script

We will create the script using the SIL Manager from Administration -> Add-ons -> SIL Manager. Select the folder where you want the file to be
created and click New->New file.

For the purpose of this guide, we will use the following script:

https://confluence.kepler-rominfo.com/display/SIL/Common+REST+Service
https://confluence.kepler-rominfo.com/display/JJUPIN

print(argv[0]);
return "Hello Worl d!'"

Step 2 - Add the Script to the Gadget
SIL Runner Gadget

MName | test

A suggestive name for the program

Description

A detailed description of what the pregram dees and maybe some usage tips.

Path || geject a folder Q

& silprograms
k ogadget.sil
I liveFieldsTest sil
Ik validator1 sil

Select the file containing the SIL script to run

Security ‘“Public ®User 2 Group

Choose the security level. Only the selected enfity and %ninistramrs will be allowed to see and run the script.

User | admin |.a

Select the user which is allowed to see and run the script

Save Cancel

For the purpose of this guide, the special user | mentioned earlier will be the generic "admin".

Step 3 - Identifying the Script ID

Using your favorite browser's Developer tools, inspect the select list from the Runner tab and look for the newly created script. Since we
restricted it to the special user, we'll have to be logged in as "admin” to see it.

You should find something like this:

S MEE

<sel ect nane="silid" id="silid" class="select6">
<option val ue="10001">t est </ opti on>
</ sel ect >

You guessed it! The ID is 10001.

Alternative
You can also find the script ID by analyzing the krunnablesils table from the JIRA database.

Step 4 - Calling the Script

Calling the script is done using a HTTP GET to the REST resource behind the SIL Runner Gadget.

Authentication
Don't forget to use basic authentication with your request.

In the URL, we need to specify 2 parameters:

¢ silid - the script ID
® silparams - the comma-separated list of additional parameters

To actually call the script, we will use this URL

<your base_url >/rest/kepl errom nfo/jjupin/latest/rungadget/run?silid=10001
&si | par ams=abc

This will return a JSON object containing 2 important parameters:

® key
® starthour

Example return value

{"key": "1","starthour": "1363342987392","nessage": "Sil|l script runnig.
Pl ease wait..."}

The script is now running. This pair uniquely identifies your running script. You'll need to make another request to get the results, using the values
you received in the first response.

...

<your _base_url >/rest/kepl errom nfo/jjupin/latest/rungadget/verifyResponse?
key=1&st art hour =1363342987392

...

Now you can have one of two types of responses:

1. if the response contains the key and starthour parameters (they will have the same values as the ones that were sent), this means that
your script is still running and you'll have to do the call again and again until you find response 2.

Example return value

{"key": "1", "starthour": "1363342987392","nessage”: "Sil|l script runnig.
Pl ease wait..."}

2. if the response contains the returns parameter, your script is done and the value of the parameter specifies the list of returned values
from the script.

Example return value
{"returns": ["Hello World!"]}

That's all there is to it using the REST resource!

Solution 2 - SOAP

Required plugins
You will need the following JIRA plugins:

1. JJUPIN

Level: ADVANCED

The JJupin exposes a web service that can be used to call remote scripts. That's what the call routine actually calls. The WSDL is available at <y
our_base_url>/rpc/soap/sil?wsdl. You will need to enable the web service by going to Administration -> Kepler General Parameters -> JJupin
and setting WSEnabled to true.

The web service provides a "execute” method which takes 3 parameters

® in0 - String - authentication token
® inl - String - the path of the file containing the script
® in2 - String [] - parameters to be sent to the script

Step 1 - Authentication

To authenticate your request, you can either use the JiraSoapService to generate an authentication token and pass it to the execute method, or
use Basic Authentication or OAuth to authenticate your request. Note that when using basic authentication or OAuth, you will still need to provide
a non-null, non-empty bogus token.

Step 2 - Calling the Script

All that's left to do now is to call the web service.

Additional Documentation

Before using JJupin check out the Simple Issue Language documentation for a better grasp of SIL usage and capabilities.
Here you will find some useful tutorials that will help you get started with JJupin.

If you would like to share your idea, please notify us.

Known problems (and their resolutions)

We strive for perfection. However some things really do not depend on us. For some we consider there's room for improvement but we didn't have
the time to achieve them.

So here's a list of common problems (we will update the page with each finding):

No Affected Problem Explanations and the Resolution
Functionality

1 listeners, Upgrading katl-commons to a superior There are classloader issues on JIRA, disabling the plugin does not clear completely
service version, but the behavior is the same on the classes used by the listeners and services.
listeners and services.
This is somehow normal, since the listeners and services are loaded in the "superior"
layer, not in the plugin OSGI framework. Since this

is a JIRA behavior, we cannot do too much about it.

Resolution 1: disable-enable the listeners and services. This may or may not work, it
depends on the version of JIRA.

Resolution 2: cold restart of JIRA (this for sure works).

https://confluence.kepler-rominfo.com/display/SIL/call
http://docs.atlassian.com/rpc-jira-plugin/latest/com/atlassian/jira/rpc/soap/JiraSoapService.html
https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-+Basic+Authentication
https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-+OAuth+authentication
http://confluence.kepler-rominfo.com/display/SIL/Home
https://confluence.kepler-rominfo.com/display/TR
https://confluence.kepler-rominfo.com/display/JJUPIN

2 configuration Upgraded JJUPIN, but configuration pages are

pages looking odd
3 plugin Plugin fails to (re)enable after it was disabled,
installation or some components remain disabled (UPM

shows "x of y modules enabled" where x <y).

4 plugin Gsgi Cont ai ner Excepti on: Cannot
installation start plugin
caused by:

org. osgi . framewor k. Bundl eExcepti on:
Unr esol ved constraint in bundle

5 checking A number of messages are logged to ERROR,
scripts but the Check button says the check is OK.

Previous versions documentation

We are providing backward compatibility only, so when you upgrade a plugin
make sure you upgrade the dependencies as well.

This happens when you install for instance, JJUPIN v2.5.5 directly from jar file (not
.obr file) but you preserve katl-commons v.2.5.7.

The version of katl-commons is unable to provide the services JJUPIN requests,
therefore there are errors in the logs and pages are looking odd

Resolution: upgrade katl-commons to the latest level offered by the corresponding
dependent plugin / JIRA version (for our example, minimal 2.5.8)

Resolution: Re-install the plugin. If you're uploading the plugin file from your local
disk, uninstalling the previous version is not required. Just upload over the existing
version. If you're installing the plugin from the marketplace, you'll need to uninstall
first since there's no option to "Install" plugins that are already installed on your JIRA
instance.

Resolution: Install correct katl-commons or warden, as explained in the exception.
You need to provide the correct dependency. Even if we provide the .obr archive,
sometimes, in some containers, this is not enough and a reinstall is needed.

Affects version 3.0. The messages are wrongfully logged to ERROR and will be
downgraded to DEBUG in a future version.

If you have an older version of JJupin here is the documentation for JJupin 2.5 and 2.6.

License & Pricing

Info

This product requires a Kepler license, which can either be provided as the jjupin.lic file, or as the key generated via the Atlassian Marketplace.

You can find more about licenses here.

You can find pricing details on Atlassian Marketplace or visiting our site: Kepler Products.

Contact

Software Development and Services

Florin Haszler
Phone: + 4021 233 10 80
Email: fhaszler@kepler-rominfo.com

http://www.kepler-rominfo.com

JIRA Plugins Support

Please see Getting Support.

Backup and restore

At Restore: install first the plugins

https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=JJUPIN&title=JJupin+Documentation+%28v+2.5.x+and+v+2.6.x%29
https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.jjupin
https://marketplace.atlassian.com
http://www.kepler-rominfo.com/pages/solutions/jira-plugins/jjupin
http://www.kepler-rominfo.com/
https://confluence.kepler-rominfo.com/display/EULA/Getting+Support

Mundane operations as backup and restore may pose some problems to the unsuspecting JIRA administrator. Since all the Kepler plugins create
some tables in the JIRA schema - we created this mechanism long before Active Objects was introduced into Atlassian's framework - you need
to take some precautions at restore.

Specifically, at restore you need to create the tables used by our plugins. You do not need to copy schema from the previous JIRA or fill it with
data, you just need to simply install the plugins into JIRA before restoring (enabling the plugins would create the needed tables).

JJUPIN has two dependencies:

1. katl-commons (core support)
2. warden (used for licensing)

For reference, these are the tables created by each add-on

Plugin Tables

JJUPIN krunnablesils
krssecurity
klistenersils
jiIif_config
jiif_project
jjIif_category

katl-commons = kplugins
kpluginscfg
kissuestate

kstatevalues

warden -

	JJupin Documentation
	Introduction
	What's new in JJUPIN 3.0

	Requirements
	Installation & Configuration
	Installation
	Installation via Atlassian Universal Plugin Manager
	Manual Install
	Installing a New License

	Install notes for JIRA 7
	What should I do if I installed an incompatible version?

	Administration Page
	Advanced Config
	SMS Provider Configuration

	SIL Manager
	SIL Services & Scheduler
	SIL Listener
	SIL Custom Field Descriptors
	Live Fields Configuration

	SIL Configuration
	Mail Configuration
	Remote Systems
	REST Remote Systems

	SQL Configuration
	LDAP Configuration
	Configuring a SIL JIRA Service
	Configure JIRA Logging
	Licensing
	Uninstall
	Manual Uninstall
	Uninstall via Atlassian Universal Plugin Manager

	User guide
	Writing Validators, Postfunctions and Conditions
	Transition View
	Workflow View
	Workflow Viewer
	SIL Runner Gadget
	Parameters in SIL Runner Gadget

	Live Fields
	How 'Live Fields' work
	Supported fields and graphic elements
	Accessing the current screen
	Routines
	lfAllowSelectOptions
	lfDialogMessage
	lfDisable
	lfDisableTab
	lfEnable
	lfEnableTab
	lfExecuteJS
	lfGlobalMessage
	lfHide
	lfHideAllExcept
	lfHideFieldMessage
	lfHideTab
	lfInstantHook
	lfRedirect
	lfRefreshScreen
	lfRestrictSelectOptions
	lfSet
	lfShow
	lfShowAll
	lfShowFieldMessage
	lfShowTab
	lfWatch

	Additional Routines
	runnerLog

	Development
	SIL Programming Warnings
	Calling SIL Scripts from Remote Systems

	Additional Documentation
	Known problems (and their resolutions)
	Previous versions documentation
	License & Pricing
	Contact
	Backup and restore

