
1. Home . 2
1.1 KIWI Documentation . 2

1.1.1 Kiwi Features . 4
1.1.2 Requirements . 6
1.1.3 Installation . 7

1.1.3.1 Install notes for JIRA 7 . 7
1.1.3.1.1 What should I do if I installed an incompatible version? . 7

1.1.3.2 Installation via Atlassian Universal Plugin Manager . 8
1.1.3.3 Manual Install . 8
1.1.3.4 Licensing . 8
1.1.3.5 Uninstall . 9

1.1.3.5.1 Manual Uninstall . 10
1.1.3.5.2 Uninstall via Atlassian Universal Plugin Manager . 10

1.1.4 User Guide . 11
1.1.4.1 Export Workflows . 12
1.1.4.2 Import Workflows . 14

1.1.4.2.1 Custom Fields Mapping . 21
1.1.4.2.2 A Note About SIL Aliases . 23
1.1.4.2.3 Import Options . 23

1.1.4.3 KIWI Tools . 25
1.1.4.3.1 Merging .cfmap files . 25
1.1.4.3.2 Merging sil.aliases files . 26

1.1.4.4 Supported Custom Fields . 27
1.1.5 Backup and restore . 27

Home
This is the home of the KIWI space.

To help you on your way, we've inserted some of our favourite macros on this home page. As you start creating pages,
blogging and commenting you'll see the macros below fill up with all the activity in your space.

Recently Updated

KIWI30
Feb 28, 2017 attached by • Alexandru Geageac

KIWI 3.0
Feb 27, 2017 created by • Confluence Administrator

What should I do if I installed an incompatible version?
Dec 02, 2015 created by • Alexandra Topoloaga

Install notes for JIRA 7
Nov 16, 2015 created by • Alexandru Geageac

Requirements
Nov 16, 2015 created by • Alexandru Geageac

Backup and restore
Feb 19, 2015 created by • Alexandru Geageac

Custom Fields Mapping
Sep 15, 2014 created by • Maria Cirtog

kiwiCfId.png
Sep 15, 2014 attached by • Maria Cirtog

Import Workflows
Sep 15, 2014 created by • Maria Cirtog

Export Workflows
Sep 15, 2014 created by • Maria Cirtog

Uninstall via Atlassian Universal Plugin Manager
Sep 15, 2014 created by • Maria Cirtog

kiwiUninstall3.png
Sep 15, 2014 attached by • Maria Cirtog

kiwiUninstall2.png
Sep 15, 2014 attached by • Maria Cirtog

kiwiUninstall.png
Sep 15, 2014 attached by • Maria Cirtog

plugins admin menu.PNG
Sep 15, 2014 attached by • Maria Cirtog

Navigate space

KIWI Documentation

https://confluence.kepler-rominfo.com/display/KIWI30
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/display/KIWI30
https://confluence.kepler-rominfo.com/display/~admin
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog
https://confluence.kepler-rominfo.com/display/~mcirtog

Gallery

Features

Have you ever been in the situation when you built everything on your development server, everything goes smooth, then going with your solution
into the production you got to re-do much of your steps, piece by piece, custom field with custom field? Do you know the pain? Remember how
you wrote down each step on some big documents? Remember when you forgot to document the change from the very beginning, and you got it
wrong? Remember the mistakes you have made? Remember the look on your customer's face? Do you remember their questions? "How can it
be - it's just a deployment? Why is taking it so long? Will I be able to use my production JIRA on Monday?"

Well, now you're saved, because there's KIWI to help!

KIWI is a JIRA workflow implementation deployment tool and it addresses initial configuration as well as subsequent deployments, on staging or
production environments.

It delivers issue statuses, custom fields, workflows, associated screens, SIL scripts and configurations on your target system, having the ability to
map custom fields, change the scripts, SIL aliases and configuration so no change is needed on the deployment machine: your implementation
will be ready to go with just a few clicks!

Note: some of you might know KIWI by its former name: Sunda2Sahul ().http://en.wikipedia.org/wiki/Sahul_Shelf

Kiwi Features

Kiwi is the tool you'll need to export or import your workflows in just a few seconds. Designed to satisfy many customers requests, this plugin
offers you the following features:

Exports/imports an workflow

During the import, Kiwi exports and restores the selected workflow, carrying out all its steps, statuses and transitions.

The used in the workflow are carried out at export and created or updated on the Jira Import instance at import. On the destinationstatuses
server, the mapping of statuses is done by name.

For each status exported, if on the Jira import instance there is a status having the same name with an exported one, this existing status will be
updated to match the exported one, otherwise the status will be created.

The used in the workflow are exported and imported together with their conditions, validators and postfunctions.transitions

Carries SIL scripts with the workflow

 If you are using our plugin and you have created (validators, conditions or post-functions) on the transitions of the exported JJUPIN SIL scripts
workflow, these SIL scripts will be exported and restored on the Jira Import server.

At the import time, if on the destination server there is a SIL script file having the same name and path with a sil script from the kiwi file that is
being imported, the existing sil file will be overwritten. You will receive a warning related to this in the Import page, at Step 2:Actions for the action
'Create or update the SIL files' (the action can be found and also disabled in the section General actions).

http://en.wikipedia.org/wiki/Sahul_Shelf
http://confluence.kepler-rominfo.com/display/JJUPIN
http://confluence.kepler-rominfo.com/display/SIL

Exports/imports Issue type screen schemes

Kiwi exports/imports the Issue type screen schemes to the selected workflow.related

As you know from JIRA's documentation, there are some associations like this:

Project -> Issue Type Screen Scheme -> [Issue Type, Screen Scheme].

And each Screen Scheme contains the desired screens: Create/View/Edit.

To be more specific, an Issue type screen scheme (ITSS) contains one or more associations between an issue type and a screen scheme, so our
plugin exports those screen schemes that are present in the exported ITSS.

Screen schemes associates the issue operations to screens. These screens are also exported/imported by KIWI, together with the screens used
in the workflow for transitions.

Issue type screen schemes and Screen schemes are mapped by name.

If on the Jira Import instance there is found an Issue type screen scheme with the same name, it will be updated to match the exported one. So it
will have the same description and [issue type, screen scheme] associations. Otherwise the Issue type screen scheme will be created.

Exports/imports workflow related screens

KIWI exports and imports all the screens used directly in the selected workflow (screens that are configured as Transition View in the workflow
), and also all the screens from thetransitions Issue type screen schemes .the workflow is related to

. Every screen that is exported is analyzed, and if the screencreens are mapped by name at the import timeThe s
exists on the Jira Import instance (), it will be updated to match the screen from the exported fileif it is found by name
(replace all the entities, i.e tabs and custom fields of the updated screen with the entities of the exported screen - we

), otherwise the screen will be created.do not merge the two screens

Exports/imports workflow related issue types

Since version 1.0.1-beta3, KIWI exports all the issue types from the and that are found in the relatedcontexts of related custom fields Issue
.type screen schemes

In the import page, you can choose what issue types should be imported. Only custom fields that have at least one of the selected issue types
associated in their context or that have global context, and only the relevant issue type screen schemes associations for the selected issue types
will be imported.

Issue Types are mapped by name at import. Every issue type that is selected for import is analyzed, and if it exists on the Jira Importexported
instance (), it will be updated to match the issue type from the exported file, otherwise the issue type will be created.if it is found by name

Exports/imports workflow related custom fields

KIWI exports/imports all the custom fields from the screens related to the workflow (e.g. and the screens that are found in the transition screens
related). Issue type screen schemes

To be more specific, Kiwi also exports the custom fields that are not associated directly to the workflow. Kiwi also carries out all the custom fields
that are specific to the Create/Edit/View screens only in the ITSS and not in the workflow.

These custom fields are exported along with their contexts - Issue Types and Projects.

What does related mean?
Well, an Issue type screen scheme will be exported if it is used as a Screen Scheme in at least a project that associates to the current
workflow.

The reason of exporting this was to recreate on the destination server the Create/Edit/View screens that can be associated to a project
that is related to the current workflow.

[Issue Type, Screen Scheme] represents a mapping between the issue type and the Screen Scheme.

For instance the issue type `Bug` can have an associated Screen Scheme, therefore its specific Create/View/Edit screens that can be
different to issue type `Task` and its specific Screen Scheme.

The projects used in the contexts must exist on the destination server(the search is done by project key). Otherwise, a project mapping
may be configured at Import, Step 1, Import Options section. Otherwise the contexts are partially created/updated using the existing
projects, if at least one project for the context is found.

http://confluence.kepler-rominfo.com/display/KIWI/What+KIWI+can+do#WhatKIWIcando-expImpITSS

1.
2.

3.

4.

During the import time, every custom field (let's name it) that is present in one of the exported screens is mapped by using theexported cf
following algorithm:

at first KIWI looks for a mapping/match (done using the Change action link from the Import page-Step 2 or from the mapping file)
if there is a mapping/match defined in the mapping file, it will get the custom field from the Jira Import instance.(The existing custom field
is updated to match the exported custom field).
otherwise if it is found a custom field that has the same name and the same type then this existing custom field will be updated to match,
the exported custom field
otherwise the custom field will be created

When a custom field is updated, the name, description, the context(s) and the searcher are updated.

If you are not satisfied about how custom fields are mapped, and you don't want to edit the mapping file, KIWI offers you the possibility to change
the custom field actions directly from the . import page

In a few words, you can choose to update a custom field by selecting the update operation and the desired destination for the proper custom field,
or you can decide to create a new custom field. It's up to you.

Updating or creating a custom field involves carrying over its name, description, searcher and contexts(For each context the context name,
description, issue types, projects, default value, and options -if any, e.g. for the Select List/Radio Buttons are carried over). Also, for the Kepler

, the special configurations are exported/imported by Kiwi.provided custom fields

Generates .cfmap files

A successful import will generate two mapping files(the current and the next mapping file) in the folder.JIRA_HOME_FOLDER/kepler/kiwi

The is named using the following pattern: <imported_workflow_name>_next_<timestamp>.cfmap. It contains all the mappingsnext mapping file
resulted from the import(according to your used file and according to your screen selection), including the created custom fields.For an.cfmap
update custom field action, a new entry with the match/mapping [the source custom field -> the destination custom field] is added to the file. For a
create custom field action, the entry will contain the source custom field id mapped on the newly created custom field id.

The is named using the following pattern: <imported_workflow_name>_current_<timestamp>.cfmap. It contains all thecurrent mapping file
mappings(according to your used file and according to your screen selection) for the custom fields existing on the Import server. For an.cfmap
update custom field action, a new entry with the match/mapping [the source custom field -> the destination custom field] is added to the file.
Nothing is added to this file for a create custom field action.

For both mapping files names <timestamp> represents the date at which the file is generated, in the format yyyyMMddHHmm.

Further readings about can be found .custom field mapping file here

Generates a SIL aliases file (for JJUPIN users)

If you are using our plugin (the provider) you may have notice that there is a file in the Kepler folder of your Jira Home JJUPIN SIL sil.aliases
folder.

This file maps the custom fields onto a more easy readable names that can be used in the SIL scripts.

The export operation encapsulates the entire file form the source server, including the comment lines.

A successful import will generate this file in the Kiwi home folder with the name: , where<imported_workflow_name>_sil_<timestamp>.aliases
<timestamp> represents the date at which the file is generated, in the format yyyyMMddHHmm. (For instance, the
file Workflowfortest_sil_201310071330.aliases is the sil.aliases file generated when importing the workflow Workflowfortest, on 07.10.2013,
13:30). This file will contain , only those custom field aliases that were imported re-mapped according to your file and according to your.cfmap

.screen selection

Offers tools to merge CF mapping files and sil.aliases files

Kiwi offers the to merge the generated .cfmap and sil.aliases files. You can keep the sil.aliases file up-to-date or create mappings that cantools
be reused.

Executes SIL scripts at the beginning and in the end of the workflow

From the page, you can add to your exported workflow a list of pre-import and post-import sil files that will be executed on theExport Workflow
Import Jira instance, before(the pre-import files) or after(the post-import files) executing the main import.

Important notices

For custom fields, in order to fully restore the contexts, the projects (the search is done by project key) should exist on the Jira Import
instance before import or a mapping must be defined for a missing project in the section. Otherwise, the contexts areImport Options
partially created/updated using the existing projects, if at least one project for the context is found.
KIWI doesn't export/import things related to a project, like Workflow Schemes, Field Configuration Schemes, Field Configurations and
Issue Type Schemes. If needed, these must be manually created and associated to projects. The are carriedIssue type screen schemes
out by KIWI, but the association to the projects must be done manually after the import

https://confluence.kepler-rominfo.com/display/JJUPIN
https://confluence.kepler-rominfo.com/display/SIL

1.
2.
3.
4.
5.

Requirements

A fully installed KIWI plugin consists of multiple jar files. You are advised to use the bundle installer when installing . Please refer to the KIWI Instal
 for explanations and details.l Guide

At the minimal level consists from 2 dependencies (jar files): katl-commons (a library having countless utility routines, but also - mostKIWI
important - the SIL language parser) and a jar file, which contains specific tools to export or import your workflows.KIWI

Compatibility

KIWI JIRA katl-commons

3.0.0 6.0 - 6.4.12 3.0.0

3.0.1 6.0 - 6.4.12 3.0.7

3.1.0 7.0.0 3.1.0

Installation

Install notes for JIRA 7
What should I do if I installed an incompatible version?

Installation via Atlassian Universal Plugin Manager
Manual Install
Licensing
Uninstall

Manual Uninstall
Uninstall via Atlassian Universal Plugin Manager

Installation via Atlassian Universal Plugin Manager

This page points the simple steps to follow for installing the plugin using the Universal Plugin Manager. This method requires an internet
connection.

Manual Install

It may seem more complicated, but a manual install is quite easy to do. After all, all you have to do is to copy some files. Here's how.

Install notes for JIRA 7

When upgrading from an older version of JIRA to JIRA 7, you must update all our plugins as well.

As you can see on this , the versions compatible with JIRA 7 are the 3.1.x versions.page

What should I do if I installed an incompatible version?

As we have said before, versions are compatible with and versions are compatible with .3.0.x JIRA 6.x 3.1.x JIRA 7.x

If you have installed KIWI 3.0.x on JIRA 7.x or KIWI 3.1.x on JIRA 6.x, you should do the next steps :

Uninstall warden
Uninstall katl-commons
Uninstall KIWI
Install the right version of KIWI (the one compatible with your JIRA)
katl-commons and warden should now have the right versions as well

Please note that the kiwi plugin must be installed on both the export and the import Jira instances.

https://confluence.kepler-rominfo.com/display/KIWI/Installation
https://confluence.kepler-rominfo.com/display/KIWI/Installation
https://confluence.kepler-rominfo.com/display/KIWI/Requirements

5.

1.
2.

Installation via Atlassian Universal Plugin Manager

If you are not familiar with Universal Plugin Manager (UPM), please read before we begin.this document

Steps are simple:

1. Enter the administration screen and go to tab.Plugins->Install

2. Search for plugin and install it. Installing the obr will bring also all required dependencies: and .kiwi katl-commons warden

That's all.

Manual Install

Manual Install

Do not worry, it's a simple task to install it manually:

1. Download the correct kiwi obr file from or from our site: .Atlassian Marketplace Kepler Products

2. Go to Administration->Add-ons->Manage add-ons. Install the previously downloaded obr file by using 'Upload add-on' link.

3. : Enable logging on our modules. Open with a text editor of your choice the JIRA log4j configuration file [Optional, but highly recommended] JIR
 and add these 2 lines at the end of it. Restart JIRA.A_INSTALL_DIR/atlassian-jira/WEB-INF/classes/log4j.properties

log4j.logger.com.keplerrominfo=INFO, filelog
log4j.additivity.com.keplerrominfo=false

Licensing

Dual Licensing support

KIWI plugin supports both Kepler and Atlassian licenses, but you only need one valid license to run the plugin, which can either be provided as
the file, or as the key generated via the .kiwi.lic Atlassian Marketplace

The order in which the licenses are checked is:

Atlassian License
Kepler License

It is that you do not install both licenses at once, as this might yield unwanted results. For example, consider that youstrongly recommended
have an Atlassian License with the support date expired and one valid Kepler License. In this case you cannot update the plugin, because the
Atlassian License is checked first and its support date is expired.

Atlassian Licensing

The Atlassian Marketplace allows you to easily purchase or generate an evaluation license for .KIWI

Using Universal Plugin Manager 2.0.1+

After generating the license key, all you have to do is access the section in your JIRA instanceAdministration-> Add-ons-> Manage add-ons
and paste the key into the corresponding plugin textbox.

After you uninstall katl-commons and warden, some plugins may remain disabled, so you may need to re-enable them
manually.

Technical info
Starting with a new plugin, called , will be automatically installed by any paid add-on (includingkatl-commons version 2.5.5 Warden
KIWI). This plugin is responsible with the management of licenses (both JIRA and Kepler). Do not attempt to uninstall it without
removing first all the Kepler paid add-ons.

http://confluence.atlassian.com/display/JIRA/Managing+Add-ons
https://marketplace.atlassian.com
http://www.kepler-rominfo.com/pages/solutions/jira-plugins
https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.kiwi

Kepler Licensing

The Kepler license is a file () which must be placed in the <JIRA_HOME>/kepler folder. You can either generate and download a freekiwi.lic
evaluation license by registering on and accessing the section, or you can purchase the plugin by following .our site Licenses these instructions

You can view details for your kepler license by accessing the from Kepler Licenses page Add-ons >KEPLER PLUGINS CONFIGURATION>
 menu:Kepler Licenses

The page shows the expiration and maintenance date, user limit and validity message for each selected kepler license.

If the license is expired, user limit is exceeded or license is targeted for a different JIRA server id, a red colored message shows the status.

If kepler license is close to expiration date (less than 10 days remaining), a warning message is displayed, showing the remaining time.

Uninstall

Uninstall via Atlassian Universal Plugin Manager

Reminder
Don't forget that you need only valid license to run the plugin.one

Removing an unused license
If you want to remove a no longer used Atlassian license, this can be done in UPM (for UPM 2.0.1+) , by removing the old license key
and clicking Update. To remove a Kepler license, you have to delete the correspondent .lic file from the kepler folder. Note that any
change to the Kepler license requires a server restart.

http://jira-plugins.kepler-rominfo.com/x/
http://jira-plugins.kepler-rominfo.com/x/pricing/id/3

This page shows the steps to uninstall the plugin using the Universal Plugin Manager.

Manual Uninstall

At first sight, this seem a little bit complicated but actually it isn't. All it has to be done is to remove the plugin manually and delete its tables from
the internal database.

Manual Uninstall
Uninstall via Atlassian Universal Plugin Manager

Manual Uninstall

Uninstall manually

At first we will uninstall the plugin manually and finally we'll remove the corresponding tables in the internal database.

Uninstall the plugin

Goto the folder where Jira server has been installed.

Access and manually delete KIWI plugin<JIRA_APPLICATION_DATA>/plugins/installed-plugins

Restart the server

Now you can restart Jira server

.

Uninstall via Atlassian Universal Plugin Manager

Uninstall via Atlassian Universal Plugin Manager

At first we will uninstall the plugin and finally we'll remove the corresponding tables in the internal database.

Uninstall the plugin

If you are not familiar with Universal Plugin Manager (UPM), please read before we begin.this document

1) Log in as administrator and go to Administration->Add-ons->Manage add-ons

2) Search for `Kiwi` plugin in `Manage add-ons` section and click on `Uninstall` button

You need to have access where the Jira server has been installed.

https://confluence.atlassian.com/display/JIRA/Managing+Add-ons

3) Press `Continue` when the uninstall confirmation dialog box appears

4) A message "successfully uninstalled" should appear

User Guide

Export Workflows
Import Workflows

Custom Fields Mapping
A Note About SIL Aliases
Import Options

KIWI Tools
Merging .cfmap files
Merging sil.aliases files

Supported Custom Fields

In this section, you will learn about the friendly user interface that KIWI offers and its capabilities.

Step-by-step guides, previews, demo images and screenshots were made under JIRA 6.x.

The typical scenario for KIWI is to:

export a workflow from a Jira instance(let's name it Export Jira instance)
copy the file obtained by exporting the workflow in <JIRA_HOME>/kepler/kiwi directory on the other Jira instance(the server where you
execute the import - let's name it Import Jira instance) by normal means(ssh, copy, etc)
import the kiwi file on the Import Jira instance

Export Workflows

Kiwi offers you the possibility to move complex workflows from a JIRA system to another just with the click of your mouse.

In order to do a complete import, your first(and mandatory) step is to export a workflow.

This can be done from the Export page that is accessible from the main KIWI page, which can be found in the Administration view, Add-ons->
KIWI.

Here you will find a combo-box from which you can select the workflow you want to export.

Default Workflow
The workflow " " can not be exported because this is a read only workflow.The default JIRA workflow

As the description on the page informs, you are about to export a JIRA Workflow with all its dependencies (associated statuses, issue types,
).custom fields and screens

You can add to your exported workflow a list of pre-import and post-import sil files that will be executed on the Import Jira instance, before(the
pre-import files) or after(the post-import files) executing the main import. You definitely know about sil script files if you are using our plugi JJUPIN
n. , or is very easy to learn yet powerful and extensible: it's a Java-like language independent of the JIRA version, SIL Simple Issue Language
offering power through simplicity and flexibility.

In order to add a pre-import file, press the 'Add Pre-Import File' button that will open a pop-up dialog where you can choose a sil file from the kiwi
home folder("):"PATH_TO_JIRA_HOME/kepler/kiwi

Press the Add button from the pop-up, and you will see the chosen script file above the 'Add Pre-Import File' button. The script will be added to
the exported kiwi file when pressing the Export button.

http://confluence.kepler-rominfo.com/display/JJUPIN
http://confluence.kepler-rominfo.com/display/SIL

If there there is no sil script file in the Kiwi home folder(), the pop-up will show a 'No script file' error message:PATH_TO_JIRA_HOME/kepler/kiwi

Use the 'Add Post-Import file' button and the same procedure for adding a post-import sil file.

Press the Export button.

If everything workes as planned, you'll see a SUCCESS message on the screen. The exported file can be found in the (this KIWI home folder
can be found at). Here you will find a new zip file named after your exported workflow(the name is a "PATH_TO_JIRA_HOME/kepler/kiwi"
concatenation of the exported workflow name, the current date in the format yyyyMMddHHmm and .kwi) for instance,
Workflowfortest_201310071619.kwi.zip is the file obtained by exporting the workflow Workflowfortest at local time 07.10.2013, 16:19.

After this operation you have a brand new file that you should copy to your JIRA system where you'll do the import. Now you've just left KIWI Sun
.da

Import Workflows

KIWI allows you to import a workflow together with its associated statuses, screens, issue type screen schemes, custom fields and SIL scripts.

SIL scripts
NOTE: if you are using our and you have created (validators, conditions or post-functions) on the plugin JJUPIN SIL scripts
transitions of the exported workflow, these SIL scripts will be exported too.

Make sure you perform a backup first, prior to importing the workflow. You may completely mess up the current installation of
JIRA!

http://en.wikipedia.org/wiki/Sahul_Shelf
http://en.wikipedia.org/wiki/Sahul_Shelf
https://confluence.kepler-rominfo.com/display/JJUPIN
https://confluence.kepler-rominfo.com/display/SIL

The import page is accessible from the main KIWI page, that can be found in the Administration view, Add-ons-> KIWI:

In the import page you must select the kiwi file to be imported (from the list of kiwi files present in your <JIRA_HOME>/kepler/kiwi directory).

Optionally you can select a mapping file, if you want to define your own . (Please be sure you know what you are doing incustom fields mapping
this case!)

If the Next button is pressed, but no workflow is selected, you will receive an error message:

In order to import a workflow, the file obtained by exporting the workflow must be placed in <JIRA_HOME>/kepler/kiwi directory (on the
server where you execute the import, of course) by normal means (ssh, copy, etc).

After choosing an workflow, you can configure the settings for the import in the section .Import Options

After pressing the Next button, you will get to Step 2: the Actions that are going to be executed.

The actions are grouped into sections by their type: Status, Issue Types, Custom Fields, Screens, Issue Type Screen Schemes and General
actions.

Each section can be expanded or collapsed with a simple click on the section title. When a section is collapsed, in the column Messages there are
shown the total number of errors and warnings for the section's actions and the first 2 errors(if there are any). If you want to see more errors or
the warnings click to expand the message.

Initially all sections are collapsed.

When a section is expanded, for each action in the column Messages there are shown the errors and warnings related to it (if there are any) and
for the actions related to custom fields, there is a 'Change action' link that helps you re-define your custom fields actions as you need.

For the actions that are not mandatory, in the column Approve there is a check-box that lets you uncheck the actions that you don't want to be
executed. All actions are approved(checked) by default.

If some happens for some action, error messages are printed for that action.validation errors

If some of the actions have errors and you try to press the Next button, you will receive an error message:"Some of the actions have errors. Can
not continue with import until all errors are gone!". In this case you should fix the errors and then continue with the import.

The actions are determined by using the mapping file(if you have defined and selected one) and the automatic mapping process.

Since version 1.0.1-beta2, if you are not happy with an action related to custom fields, you can change it by using the link.Change action

Also, the old and not so pretty way is to change the , by creating or changing the mapping file. In this case, press 'Go tocustom fields mapping
Configure Import' and configure the import with the new mapping file selected.

If no validation errors are present and you agree the actions and want to continue with the import, press the Next button.

If everything goes well, you will see the success message as below:

1.

2.

3.

Even if the workflow was imported successfully, it might be the case that one or more actions finished with an error or warning. All these
" " message. For instance, when creating a context for amessages(errors, warnings or info) are listed below the Successfully imported workflow

custom field, if no project corresponding to the context can be found on the Export server, the context is not created and a warning message is
displayed. If the generated sil aliases file is empty, an info message is displayed.

Import actions

Briefly, the following rules are followed in the import process:

Workflows are mapped by name. If on the Jira import instance an workflow with the same name as the exported one is found, this
existing workflow will be updated to match the exported one, otherwise the workflow will be created
Statuses are mapped by name
Issue types are mapped by name
Issue type screen schemes and Screen schemes are mapped by name. If on the Jira Import instance an Issue type screen scheme with
the same name is found, it is updated to match the exported one (to have the same description and issue type -> screen scheme
associations), otherwise the Issue type screen scheme will be created
Screens are mapped by name. Every screen that is exported is analyzed, and if the screen exists on the Jira Import instance (is found by
name), it will be updated to match the screen from the exported file, otherwise the screen will be created
Custom fields are mapped using the mappings(according to the screen selection or from the mapping file). If no mapping is found,
custom fields are automatically mapped by name and type. Every custom field that is present in one of the screens exported is
analyzed(let's name it):exported cf

if a mapping is found for it, get the custom field from the Jira Import instance on which the exported cf is mapped and update it to
match the exported cf(The name, description, searcher and the context(s) are updated)
otherwise if a custom field with the same name and type is found in the Jira import instance, this existing custom field will be
updated to match the exported custom field(The description, searcher and the context(s) are updated)
otherwise the custom field will be created

Change action

Here you can change an action related to custom fields.

When you first click on the Change action link for an action, a pop-up showing the current action appears:

This is the pop-up for the action 'Create Custom Field com.atlassian.jira.plugin.system.customfieldtypes:multiselect (named 'multisel', former id
'customfield_14900')'

If you want to change it to an update action, choose UPDATE instead of CREATE from the select list near Action. After that a select list with
compatible custom fields(having the same type with the source custom field) appears:

You can give up any moment by pressing the Get me out of here link.

Choose the custom field you want from the select list(near 'Change destination custom field to') and press the Change action button.

You should see your changed action in the list of actions(The warning shows that the project with key 'MARPRJ', that is used in the context of the
custom field 'multisel' does not exist):

Please note that a validation error might appear after changing an action if the new destination custom field selected is already mapped in another
action, so you should carefully change your actions.

Validation errors

The type for the exported custom field doesn't exist on the server where you execute the import(The plugin is not installed or
not enabled):

Solution: Install your missing plugin, or make sure it is enabled.

The exported custom field doesn't have the same type with the custom field that will be mapped to:

Solution: Change the mapping for the custom field with problems(in the example above blitz1), by using the 'Change action' link or directly into
the mapping file, so as to be mapped on a custom field with the same type.

Two or more custom fields are mapped onto the same custom field:

Solution: Change your mappings (by using the 'Change action' link or directly into the mapping file) so that only one custom field is mapped on
the custom field from the message (if you change directly into the mapping file, for the example above, customfield_10104 must be present only
once in the right column) .

Custom Fields Mapping

As you may have noticed, in the Kiwi Import page you can choose a mapping file that allows you to define your own mapping of exported custom
fields onto existent ones.

What is this file for?

It provides the plugin with rules that must be followed when mapping the custom fields you've exported onto existent custom fields on the import
instance. The mapping file is a plain text file that can be edited with any text editor.

Manually creating a custom field mapping file

The first step is to create a new text file (the name is up to you) with the extension in the following path:.cfmap "JIRA_HOME_FOLDER/kepler/k
.iwi"

After that fill in the file with the mappings by your needs: Choose a custom field from your exported workflow that you want to be mapped, and get
ID. Get the custom field ID from the Jira import instance onto which the exported custom field will be mapped. Add a new linethe custom field

corresponding to the mapping in your mapping file as

customfield_eeeee=customfield_iiiii

, where customfield_eeeee is the ID of the custom field from the exported file and customfield_iiiii is the ID of the custom field from the Jira import
instance. Repeat the operation for all the custom fields you want to map.

Here's an example:

customfield_10303 = customfield_11100
customfield_10305 = customfield_11101
customfield_10312 = customfield_11102
customfield_10313 = customfield_11103
customfield_10321 = customfield_11104

The first row from the example above can be read like this: "Map the custom field 10303 from my exported workflow onto the custom field 11100

from this JIRA system". The first column of the mapping file has the custom field ids that you want to map from the exported workflow, and the
second column contains the ids of the custom fields from the Jira server where the import is executed.

Import generated mapping files

A successful import will generate two mapping files(the current and the next mapping file) in the folder.JIRA_HOME_FOLDER/kepler/kiwi

The is named using the following pattern: <imported_workflow_name>_next_<timestamp>.cfmap. It contains all the mappingsnext mapping file
resulted from the import(according to your used file and according to your screen selection), including the created custom fields.For an.cfmap
update custom field action, a new entry with the match/mapping [the source custom field -> the destination custom field] is added to the file. For a
create custom field action, the entry will contain the source custom field id mapped on the newly created custom field id. This file can be used for
a future import on the same server.

The is named using the following pattern: <imported_workflow_name>_current_<timestamp>.cfmap. It contains all thecurrent mapping file
mappings(according to your used file and according to your screen selection) for the custom fields existing on the Import server. For an.cfmap
update custom field action, a new entry with the match/mapping [the source custom field -> the destination custom field] is added to the file.
Nothing is added to this file for a create custom field action.This file is useful for executing again the same import on another server that is
identical as a structure to the Jira Import server where the file was generated.

For both mapping files names <timestamp> represents the date at which the file is generated, in the format yyyyMMddHHmm.

To merge two generated CF Maps files, you need to use the corresponding tool.

Getting a custom field ID

Go to .Administration -> Custom Fields

Choose your desired custom field and click on the cog icon
Set your mouse over the Configure link. In the link displayed on the bottom of the page you'll see the URL containing the custom field ID you're.

looking for.

Another way to get a custom field ID is by querying your data base if you have configured an external one.

Mapping error messages

If the mapping file has wrong mappings, error messages are displayed for the corresponding actions at .Step 2: Actions

The problems that might occur are:

The exported custom field doesn't have the same type with the custom field that will be mapped to. In this case a message error will
appear:

Two or more custom field are mapped onto the same custom field.

Both cases will generate errors that won't let you continue with the import until you fix them.

If your exported custom field has been mapped several times in the mapping file, it will be used the last mapping(in
other words the last row in which is written on the first column) without generating any error message.
Tips and Tricks

The mapping file can force to avoid the automatic matcher for custom fields and create a brand new Custom Field with all its dependenciesKIWI
from the export system. To do this just map the custom field to the empty string (leave a blank after the equals sign), like this:

http://confluence.kepler-rominfo.com/display/KIWI/Merging+.cfmap+files

Force create a custom field

customfield_10304 = customfield_10222
customfield_10309 =
customfield_10316 =
customfield_10327 = customfield_10406

This mapping file will force the creation on the Jira import instance of the custom fields 10309 and 10316 from the export file.

A Note About SIL Aliases

If you are using our plugin (the provider) you may have notice that there is a file in the Kepler folder of your Jira Home JJUPIN SIL sil.aliases
folder. This file maps the custom fields onto a more easy readable names that can be used in the SIL scripts. KIWI transfers this file from an
instance of JIRA to another. More information about sil.aliases file can be found here: http://confluence.kepler-rominfo.com/display/SIL/JIRA+inst
ance-independent+programming

The export operation encapsulates the entire file form the source server, including the comment lines.

A successful import will generate this file in the Kiwi home folder with the name: , where<exported_workflow_name>_sil_<timestamp>.aliases
<timestamp> represents the date at which the file is generated, in the format yyyyMMddHHmm. (For instance, the
file Workflowfortest_sil_201310071330.aliases is the sil.aliases file generated when importing the workflow Workflowfortest, on 07.10.2013,
13:30). This file will contain only those custom field aliases that were imported, re-mapped according to your file and according to your.cfmap

. However, we want to make it clear here, the generated file will contain only ,screen selection <exported_workflow_name_sil>.aliases the delta
i.e. what has been touch by the current import process.

To merge your generated file in the you need to launch the .sil.aliases corresponding tool

Import Options

The section Import Options is available at Step 1, Configure Import, after a workflow is selected.

Here you can define your own settings for the import execution:

Import Strategy

For the custom field contexts, screens and issue type screen schemes you can choose if in case an update is needed, the entities to be imported
will be merged with the existing ones or re-created. The default is Merge for all the three entities.

http://confluence.kepler-rominfo.com/display/JJUPIN
http://confluence.kepler-rominfo.com/display/SIL
http://confluence.kepler-rominfo.com/display/SIL/JIRA+instance-independent+programming
http://confluence.kepler-rominfo.com/display/SIL/JIRA+instance-independent+programming

Issue Types

From the select list with issue types you can choose what issue types to be taken into account when importing the workflow.

The contexts of the custom fields that are not associated to 'Any issue type', are partially imported according to the selected issue types. Also,
only the custom fields that have at least one of the selected issue types associated in their context or that have global context, and only the
relevant issue type screen schemes associations for the selected issue types will be imported.

The default value is Any Issue Type.
Projects Mapping

Here you can define a mapping between a project from the imported kiwi file and a project from the Jira Import server. This is especially useful
when the same project has different keys on the export and import server.

The projects that can be mapped here are the projects that are used in the contexts of the exported custom fields.

By default the projects are mapped by their key. If the corresponding key can not be found on the Import server, the Source Project Key is marked
with the red color(as MARPRJ is in the picture below) and the corresponding value in the column Mapped Project Key is by default ' 'Find By Key
. This means that the project key will be searched again in the moment the import is really executed (Maybe in the meantime the project is
created, for instance by a pre-import sil script).

You can change the mapping for a project by pressing the Change link.

Here you can choose from one of the existing values from the Import server.

If you choose the value , the corresponding source project will be ignored from the custom field contexts where it appears.None

If the mapped project key for a source project key is None or can not be found at the import execution time, the project will be ignored from the
custom field contexts where it is used. When trying to create a custom field context, if no associated project key can be found, then the context
will not be created any more.

An existing project from the Import server can be used only once as a Mapped Project Key.

Publish active workflows

If the workflow that you are trying to import exists and is active on the Jira Import server, a draft is created for the imported workflow. If you want
to automatically publish this draft, change the value of the radio 'For active workflows a draft is created. Do you want to publish it?' to Yes.

If the default value(No) is selected, only the draft is created(or updated if the draft exists) and it needs to be manually published.

KIWI Tools

Besides its main purpose of carrying over an workflow and its dependencies, Kiwi also produces different deltas (CF mapping files and sil.aliases
files) and offers the tools to merge these files.

CF Mapping files

The cf mapping files(the current and the next mapping file) offer you the that can be reused. They are generated by acustom field mappings
successful import in the folder.JIRA_HOME_FOLDER/kepler/kiwi

The contains all the custom field mappings resulted from the import(according to your used file and according to yournext mapping file .cfmap
screen selection), including the created custom fields. This can be used for a future import on the same server.

The contains all the mappings(according to your used file and according to your screen selection) for the current mapping file .cfmap custom
 on the Import server. This is different from the next mapping file by not including the newly created custom fields. This file is usefulfields existing

for executing again the same import on another server that is identical as a structure to the Jira Import server where the file was generated.

To merge two generated CF Maps files, you need to use the .cfmap merging tool.

SIL aliases files

The file is related to and our . This file(located in the Kepler home folder) maps thesil.aliases , or SIL Simple Issue Language pluginJJUPIN
custom fields onto a more easy readable names that can be used in the SIL scripts.

A successful import will generate a file(different from the sil.aliases file described above) in the Kiwi home folder. This file willkiwi local sil.aliases
contain , . only those custom field aliases that were imported re-mapped according to your file and according to your screen selection.cfmap

To merge your generated file in the you need to launch the .sil.aliases sil.aliases merging tool

Merging .cfmap files

After the import, Kiwi offers you the possibility to merge .two generated CF Maps files

This merging utility is accessible from the main KIWI page by pressing the 'Merge CF Maps' button:

You must choose the two cf map files to be merged using the combo boxes CF Map 1 and CF Map 2. The numeric part from the generated cf
map file names represents the date at which the file was generated, in the format yyyyMMddHHmm. For instance, the

http://confluence.kepler-rominfo.com/display/SIL
http://confluence.kepler-rominfo.com/display/JJUPIN
http://confluence.kepler-rominfo.com/display/KIWI/Merging+sil.aliases+Files

file Workflowfortest_current_201310041808.cfmap is the current cf map file generated when importing the workflow Workflowfortest at local
time 04.10.2013, 18:08.

If everything works as planned, you'll see a SUCCESS message on the screen. The 2 files were merged into a new file, cfmapMerge_yyyyMMd
, where yyyyMMddHHmm represents the current date in the format yyyyMMddHHmm.dHHmm.cfmap

Merging sil.aliases files

After the import, Kiwi offers you the possibility to merge an import generated sil.aliases file into the existing sil.aliases file.

This merging utility is accessible from the main KIWI page by pressing the 'Merge Aliases' button:

You must choose from the list of . The numeric part from the generated sil.aliases files names represents the date atkiwi generated sil.aliases files
which the file was generated, in the format yyyyMMddHHmm. For instance, the file Workflowfortest_sil_201310071330.aliases is the sil.aliases
file generated when importing the workflow Workflowfortest, on 07.10.2013, 13:30.

If everything works as planned, you'll see a SUCCESS message on the screen. The file Workflowfortest_sil_201310071330.aliases was merged
into the sil.aliases file.

Supported Custom Fields

KIWI exports/imports the custom fields from the screens related to the workflow (e.g. transition screens and the screens that are found in the
related Issue type screen schemes).

All Jira standard custom fields are supported. These custom fields are exported along with their contexts: The issue types, projects, default value
and options(if the custom field may have options) associated to each context are exported and imported on the deployment machine.

Beside these, Kiwi knows how to handle the following Kepler provided Custom Fields:

Blitz Actions Custom Field
SIL User Picker
Database Information
Data Table Information
Database Child Information
SIL Script Custom Field
User Picker - per Group
Regular Expression Custom Field
Interval Field

For these custom fields, the special configurations(if there are any) are carried over, so no change is needed on the deployment machine.

For instance, for Blitz Actions Custom Field, all the Actions(buttons) together with their scripts are exported and restored on the import server.

For DBCF fields, the configurations from the Kepler parameters page are carried over(the JNDI names, Sql queries, SIL scripts, all that is needed
to fully restore the configurations). For dynamic queries, the custom field ids are updated with their corresponding ids from the target Jira instance.

For SIL User Picker and SIL Script Custom Field, the for each context is carried over.SIL Script

For REGEX custom field the Regex configuration is exported/imported.

Backup and restore

For DBCF fields the used data sources must be manually configured on the Import server. Please see forData Source Configuration
details on how to manually configure a Data Source.

https://confluence.kepler-rominfo.com/display/KBA/Kepler+Blitz+Actions+Documentation
https://confluence.kepler-rominfo.com/display/UGPPRO/User+Group+Picker+PRO+Documentation
https://confluence.kepler-rominfo.com/display/DBCF/Database+Custom+Field+Usage
https://confluence.kepler-rominfo.com/display/DBCF/Data+Table+Custom+Field+Usage
https://confluence.kepler-rominfo.com/display/DBCF/Database+Custom+Field+Usage
https://confluence.kepler-rominfo.com/display/KCF/SIL+Script+Custom+Field
https://confluence.kepler-rominfo.com/display/UPPG/User+Group+Picker+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Regular+Expression+Custom+Field
https://confluence.kepler-rominfo.com/display/KCF/Interval+Custom+Field
https://confluence.kepler-rominfo.com/display/DBCF/Data+Source+Configuration

1.
2.

At Restore: install first the plugins

Mundane operations as backup and restore may pose some problems to the unsuspecting JIRA administrator. Since all the Kepler plugins create
some tables in the JIRA schema - we created this mechanism long before Active Objects was introduced into Atlassian's framework - you need
to take some precautions at restore.

Specifically, at restore you need to create the tables used by our plugins. You do not need to copy schema from the previous JIRA or fill it with
data, you just need to (enabling the plugins would create the needed tables).simply install the plugins into JIRA before restoring

KIWI has two dependencies:

katl-commons (core support)
warden (used for licensing)

For reference, these are the tables created by each add-on

Plugin Tables

katl-commons kplugins

kpluginscfg

kissuestate

kstatevalues

warden -

	Home
	KIWI Documentation
	Kiwi Features
	Requirements
	Installation
	Install notes for JIRA 7
	What should I do if I installed an incompatible version?

	Installation via Atlassian Universal Plugin Manager
	Manual Install
	Licensing
	Uninstall
	Manual Uninstall
	Uninstall via Atlassian Universal Plugin Manager

	User Guide
	Export Workflows
	Import Workflows
	Custom Fields Mapping
	A Note About SIL Aliases
	Import Options

	KIWI Tools
	Merging .cfmap files
	Merging sil.aliases files

	Supported Custom Fields

	Backup and restore

