
1. JJupin Documentation . 3
1.1 Introduction . 5

1.1.1 What's new in JJUPIN 3.0 . 5
1.2 Requirements . 6
1.3 Installation & Configuration . 6

1.3.1 Installation . 6
1.3.1.1 Installation via Atlassian Universal Plugin Manager . 7
1.3.1.2 Manual Install . 7
1.3.1.3 Installing a New License . 7

1.3.2 Install notes for JIRA 7 . 7
1.3.2.1 What should I do if I installed an incompatible version? . 7

1.3.3 Administration Page . 8
1.3.3.1 Advanced Config . 9

1.3.3.1.1 SMS Provider Configuration . 9
1.3.3.2 SIL Manager . 10
1.3.3.3 SIL Services & Scheduler . 11
1.3.3.4 SIL Listener . 15
1.3.3.5 SIL Custom Field Descriptors . 16
1.3.3.6 Live Fields Configuration . 18

1.3.4 SIL Configuration . 21
1.3.5 Mail Configuration . 22
1.3.6 Remote Systems . 23

1.3.6.1 REST Remote Systems . 23
1.3.7 SQL Configuration . 24
1.3.8 LDAP Configuration . 25
1.3.9 Configuring a SIL JIRA Service . 25
1.3.10 Configure JIRA Logging . 27
1.3.11 Licensing . 27
1.3.12 Uninstall . 29

1.3.12.1 Manual Uninstall . 29
1.3.12.2 Uninstall via Atlassian Universal Plugin Manager . 30

1.4 User guide . 32
1.4.1 Writing Validators, Postfunctions and Conditions . 32
1.4.2 Transition View . 37
1.4.3 Workflow View . 42
1.4.4 Workflow Viewer . 42
1.4.5 SIL Runner Gadget . 44

1.4.5.1 Parameters in SIL Runner Gadget . 48
1.4.6 Live Fields . 51

1.4.6.1 How 'Live Fields' work . 51
1.4.6.2 Supported fields and graphic elements . 57
1.4.6.3 Accessing the current screen . 61
1.4.6.4 Routines . 63

1.4.6.4.1 lfAllowSelectOptions . 64
1.4.6.4.2 lfDialogMessage . 64
1.4.6.4.3 lfDisable . 65
1.4.6.4.4 lfDisableTab . 66
1.4.6.4.5 lfEnable . 67
1.4.6.4.6 lfEnableTab . 68
1.4.6.4.7 lfExecuteJS . 68
1.4.6.4.8 lfGlobalMessage . 69
1.4.6.4.9 lfHide . 70
1.4.6.4.10 lfHideAllExcept . 71
1.4.6.4.11 lfHideFieldMessage . 73
1.4.6.4.12 lfHideTab . 73
1.4.6.4.13 lfInstantHook . 74
1.4.6.4.14 lfRedirect . 75
1.4.6.4.15 lfRefreshScreen . 76
1.4.6.4.16 lfRestrictSelectOptions . 77
1.4.6.4.17 lfSet . 77
1.4.6.4.18 lfShow . 79
1.4.6.4.19 lfShowAll . 80
1.4.6.4.20 lfShowFieldMessage . 81
1.4.6.4.21 lfShowTab . 82
1.4.6.4.22 lfWatch . 83

1.4.7 Additional Routines . 84
1.4.7.1 runnerLog . 85

1.5 Development . 86
1.5.1 SIL Programming Warnings . 88
1.5.2 Calling SIL Scripts from Remote Systems . 90

1.6 Additional Documentation . 93
1.7 Known problems (and their resolutions) . 93

1.8 Previous versions documentation . 94
1.9 License & Pricing . 94
1.10 Contact . 94
1.11 Backup and restore . 94

JJupin Documentation

Gallery

 provides virtually unlimited power to your Jira workflows. Forget about adding tens of plugins to your JIRA installation just to expressJJUPIN
yourself: this is all you need to create any post-function, validator or condition in your workflows. Our philosophy was to empower the customer
and to create a JIRA installation that will adapt very easily to the actual needs without any special knowledge of the JIRA internals; for that we
created a JIRA adapted language, named , or simply SIL.Simple Issue Language 4.0

SIL is very easy to learn yet powerful and extensible: it's a Java-like language and it is independent of the JIRA version; furthermore SIL has
made its way through our and , plugins as well as in our newest plugin family member, Database Custom Field Kepler Custom Fields Blitz Actions

 , by specific extensions using the same language. All for one purpose: power through simplicity and flexibility.KCF PRO

With Atlassian JIRA at base and with our SIL-enabled plugins on top, we managed to put big smiles on our customer's faces: JJUPIN made
possible incredible integrations and customizations of JIRA.

Whenever you have heavy workflows, integration with your payment systems or you simply want better awareness for your teams, is hereJJUPIN
to help. If you want to use Jira as a helpdesk solution, can update your inventory tables directly from JIRA, while your teams areJJUPIN
responding to user requests. If you have a tight SLA, can , helping the programmers focus on the priorities, and notJJUPIN send intelligent mail
being flooded with spam email about trivial modifications in issues.

Common use cases are:

Complex workflows
Integration with legacy systems
Integration with your enterprise systems (relational databases, files, mail systems, LDAP, SMSC)
Integration with other JIRA systems, not necessary the same version.
Smart notifications
Automatically charging for support, when you employ this business model

Besides post-functions, validators and conditions, which are linked directly in your workflow, JJUPIN offers a full environment:

SIL listeners - so you can react when an issue is changed,
SIL services & job scheduling - a way to implement batch updates and notifications to your issues and automate tasks,
A so that regular users can run their own scripts (useful for example by project leads to automate tasks),gadget
A , with common functionalities such as autocomplete,nice editor
A of the workflow actions, screens and their fields and, of course, attached SIL code,comprehensive view
A , so that you can easily browse for and edit scripts,SIL Manager
Live Fields - SIL routines for hiding, disabling, attaching messages or setting values for issue fields in any screen.

We tried hard to minimize JIRA customization time because this is usually something that comes into aid of the real productive activities;
minimizing the time for these customizations means that your teams can benefit faster from them. Our approach was pragmatic, therefore:

We introduced for custom fields so that one can develop on some test environment then move scripts directly into production,aliases
We introduced variables for SIL,environment
All our routines are lenient regarding common user mistakes (e.g. asking for a greater substring than the string has to offer does not
result in error).

Of course, we did not forget extensibility. Registering new routines and adding support for additional custom fields is easy. gives you:JJUPIN

Include scripts / User defined routines - so you can create libraries of routines
Mappings for custom fields to a known descriptor, by using Custom Field Descriptors or programatically.
An easy way to write java routines and hook them into the language. Our Javadoc is available to our customers.

https://confluence.kepler-rominfo.com/display/SIL
http://jira-plugins.kepler-rominfo.com/x/product/id/5
http://jira-plugins.kepler-rominfo.com/x/product/id/8
http://jira-plugins.kepler-rominfo.com/x/product/id/9
https://confluence.kepler-rominfo.com/display/KCFPRO/Home
https://confluence.kepler-rominfo.com/display/SIL/sendEmail
https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=SIL&title=JIRA+instance-independent+programming
https://confluence.kepler-rominfo.com/display/SIL/Environment+Variables

Recently Updated

JJUP30
Feb 28, 2017 attached by • Alexandru Geageac

Supported fields and graphic elements
Dec 21, 2016 updated by • Confluence Administrator • view change

SIL Manager
Dec 15, 2016 updated by • Confluence Administrator • view change

Backup and restore
Feb 05, 2016 updated by • Alexandru Geageac • view change

Licensing
Jan 28, 2016 updated by • Florin Haszler • view change

lfShow
Jan 27, 2016 updated by • Alexandra Topoloaga • view change

lfHide
Jan 27, 2016 updated by • Alexandra Topoloaga • view change

What should I do if I installed an incompatible version?
Dec 02, 2015 created by • Alexandra Topoloaga

Requirements
Nov 16, 2015 updated by • Alexandra Topoloaga • view change

Install notes for JIRA 7
Nov 16, 2015 created by • Alexandra Topoloaga

runnerLog
Sep 17, 2015 updated by • Alexandra Topoloaga • view change

Parameters in SIL Runner Gadget
Sep 15, 2015 updated by • Alexandra Topoloaga • view change

Selection_001.png
Sep 15, 2015 attached by • Alexandra Topoloaga

lfHideAllExcept
Sep 09, 2015 updated by • Alexandra Topoloaga • view change

Routines
Sep 09, 2015 updated by • Alexandra Topoloaga • view change

Introduction

JJupin

JJupin is a OSGI enabled JIRA plugin that offers scripting capabilities to JIRA.

SIL

The scripting language, named SIL (), helps you improving JIRA work flows, by extending them with new conditions,Simple Issue Language 4.0
post-functions and validators, while keeping you free from the changes of the JIRA API.

This language offers conditional behaviour in post-functions (which otherwise would require new states in the workflow – thus simplifying your
workflow), string manipulation routines for JIRA fields, SQL access, operating system access (command line, email, ...) and many more.

The language is intended for people who do not want to enter into implementations details of JIRA, users who do not know Java, but not only.
The purpose of the language was to make things as simple as possible , so a person without (many) programming abilities can use it, but
retaining as much flexibility as possible and exposing what we believe to be the basics of work flow customization.

If the standard functionality is not enough, you may extend the language with your own functions and your own custom field support. For details,
please us.contact

What's new in JJUPIN 3.0

https://confluence.kepler-rominfo.com/display/JJUP30
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/display/~admin
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776569&selectedPageVersions=12&selectedPageVersions=11
https://confluence.kepler-rominfo.com/display/~admin
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776518&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~ageageac
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=19988520&selectedPageVersions=6&selectedPageVersions=5
https://confluence.kepler-rominfo.com/display/~fhaszler
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776542&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776562&selectedPageVersions=2&selectedPageVersions=1
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776561&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776513&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776572&selectedPageVersions=5&selectedPageVersions=4
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=19989423&selectedPageVersions=3&selectedPageVersions=2
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=19989134&selectedPageVersions=4&selectedPageVersions=3
https://confluence.kepler-rominfo.com/display/~atopoloaga
https://confluence.kepler-rominfo.com/pages/diffpagesbyversion.action?pageId=18776549&selectedPageVersions=2&selectedPageVersions=1
https://confluence.kepler-rominfo.com/display/SIL

Updated to work with and .Simple Issue Language 3.0 all the goodies it brings
Dropped support for SOAP remote calls. All remote calls are now done via REST.
Updated configuration UISIL Listener
Updated configuration UISIL Services & Scheduler

Requirements

A fully installed JJupin consists of multiple jar files. You are advised to use the bundle installer when installing JJupin. Please refer to the Install
 for explanations and details.Guide

At the minimal level JJUPIN consists from 2 dependencies (jar files): katl-commons (a library having countless utility routines, but also - most
important - the SIL language parser) and JJUPIN jar file, which contains JJUPIN specific routines plus the user interface : script editor, gadgets,
JIRA specific hooks, etc.

SMS functionality is achieved still through the same jar file (jjupin-integration jar).

Compatibility

JJUPIN Version JIRA katl-commons

3.0 6.x 3.0

3.0.1 6.x 3.0.1

3.0.2 6.x 3.0.2

3.0.3 6.x 3.0.3

3.0.4 6.x 3.0.4

3.0.5 6.x 3.0.5

3.0.6 6.x 3.0.6

3.0.7 6.x 3.0.7

3.0.8 6.x 3.0.8

3.0.9 6.x 3.0.9

3.0.10 6.x 3.0.10

3.1 7.x 3.1

Installation & Configuration

This is the JJUPIN administration section. Please refer to each subsection for details on how you should configure the product.

Installation
Install notes for JIRA 7
Administration Page
SIL Configuration
Mail Configuration
Remote Systems
SQL Configuration
LDAP Configuration
Configuring a SIL JIRA Service
Configure JIRA Logging
Licensing
Uninstall

Installation

Installation via Atlassian Universal Plugin Manager

https://confluence.kepler-rominfo.com/display/SIL30
https://confluence.kepler-rominfo.com/display/SIL30/What%27s+new+in+SIL+3.0

1.
2.
3.
4.

This page points the simple steps to follow for installing the plugin using the Universal Plugin Manager. This method requires an internet
connection.

Manual Install

It may seem more complicated, but a manual install is quite easy to do. After all, all you have to do is to copy some files. Here's how.

Installation via Atlassian Universal Plugin Manager

Installation via Atlassian Universal Plugin Manager

If you are not familiar with Universal Plugin Manager (UPM), please read before we begin.this document

Steps are simple:

1. Enter the administration screen and go to .Add-ons->Find new add-ons

2. Search for plugin and install it.jjupin

That's all.

Manual Install

Manual Install

Do not worry, it's a simple task to install it manually:

1. Download the correct jjupin obr file from or from our site: .Atlassian Marketplace Kepler Products

2. Go to Administration->Add-ons->Manage add-ons. Install the previously downloaded obr file by using 'Upload add-on' link.

3. Copy jar into . This is optional and it is needed only if[Optional] jjupin-integration-provider JIRA_INSTALL_DIR/atlassian-jira/WEB-INF/lib
you plan to do remoting on JIRA - you can call scripts at a distance, on your JIRA instance (so you can better integrate JIRA with other apps, for
instance). This step needs a JIRA restart.

4. Install a license for jjupin, which can either be provided as the file, or as the key generated via the . See morejjupin.lic Atlassian Marketplace
details about this in .Licensing

5. : Enable logging on our modules. Open with a text editor of your choice the JIRA log4j configuration file [Optional, but highly recommended] JIR
 and add these 2 lines at the end of it. Restart Jira.A_INSTALL_DIR/atlassian-jira/WEB-INF/classes/log4j.properties

log4j.logger.com.keplerrominfo=INFO, filelog
log4j.additivity.com.keplerrominfo=false

Installing a New License

To install a new license, there are four easy steps you must follow:

Acquire the license file. ()jjupin.lic
Stop JIRA.
Copy (or overwrite) the file to . If the folder does not exist, create it.jjupin.lic JIRA_HOME/kepler/ kepler
Start JIRA.

Install notes for JIRA 7

When upgrading from an older version of JIRA to JIRA 7, you must update all our plugins as well.

As you can see on this , the versions compatible with JIRA 7 are the 3.1.x versions.page

What should I do if I installed an incompatible version?

Note
The jar cannot be installed via the UPM, since it will need a JIRA cold restart. If you need remotingjjupin-integration provider
capabilities, you will have to download it from our site () and placed manually in the jira-plugins.kepler-rominfo.com JIRA_INSTALL_DIR

 directory/atlassian-jira/WEB-INF/lib

http://confluence.atlassian.com/display/JIRA/Managing+JIRA%27s+Plugins
https://marketplace.atlassian.com
http://www.kepler-rominfo.com/pages/solutions/jira-plugins
https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.jjupin
http://jira-plugins.kepler-rominfo.com

1.
2.
3.
4.
5.

As we have said before, versions are compatible with and versions are compatible with .3.0.x JIRA 6.x 3.1.x JIRA 7.x

If you have installed JJUPIN 3.0.x on JIRA 7.x or JJUPIN 3.1.x on JIRA 6.x, you should do the next steps :

Uninstall warden
Uninstall katl-commons
Uninstall JJUPIN
Install the right version of JJUPIN (the one compatible with your JIRA)
katl-commons and warden should now have the right versions as well

Administration Page

Introduction

To allow for better customization of JJupin to suit your needs, we have created an administration area where you can configure various
parameters.

Navigate to -> to get to the :Administration > Add-ons JJupin JJupin Administration Page

1. Configuration Values for JJupin Plugin

 - the name of the default SIL script name that appears in SIL editor when you create a new condition, validator orDefault Program Name
post-function.

 - the default comment that appears in SIL editor when adding or editing a new SIL script. The first (max. 3) commented linesDefault comment
will appear as a description for your condition, validator or post-function.

 - the default SIL file name to save your program as.Default filename

 - the default directory where SIL scripts will be saved. If no absolute path indicated, then will be considered the relative pathDefault directory
to <JIRA_HOME>

After you uninstall katl-commons and warden, some plugins may remain disabled, so you may need to re-enable them
manually.

1.
2.

 - indicates if the SIL Web Service is enabled or notSIL Web Service enabled?

 SIL Web Service Run As - the username to run the service as.

2. Email Templates and Configuration Manager

The left side of the editor includes the file tree for the and the configuration directory where you can define aliases foremail template directory
custom fields and properties for SIL environment.

You can create, delete, rename or edit email templates using this editor. It also offers search/replace capability.

Advanced Config

In this section of you can configure the next parameters:JJupin Administration

Asynchronous Runner

This are the parameters for SIL Runner Gadget (up to the 3.0.8 version). Since version 3.0.8, the pool only cares about a limited set of
functionality in the SIL manager (calculating usage, etc)

 - the number of running threads (number of sil scripts running in the same time).Threads

 - time to live (running time for a sil script). If you run a script that takes more than TTL configured, the script will end with noTime to Live (TTL)
result.

 - interval to clean up the expired threads (the sil scripts that exceeds the TTL configured).Checkpoint Interval

Startup Script

Allows you to configure a startup script; this script is run every time JJUPIN gets started, either for administrative reasons (i.e. update of the
plugin) or at JIRA's own startup. This feature appears at 3.0.8 version.

SMS Provider Configuration

SMS Provider Configuration

Copy r file into <InstallPath>/atlassian-jira/WEB-INF/libJJupin-integration-provider.ja
Configure the EnmsProvider:
Create `enms.properties` file into <JIRA_HOME>/kepler folder. It's the same path where the Kepler licenses (e.g. for jjupin) are located.
Provide the configuration for SMS provider:

Info
See for instructions on how to use email templates.Mail Configuration

enms.user=<username>

enms.password=<passwd>

enms.endpoint=http://ems.kepler.ro/emsws/service.asmx?wsdl

enms.default.sender=<phone number>

enms.unicode=false

Configuration Details

enms.user is the username to authenticate against the web service end point

enms.password is the password to authenticate against the web service end point

enms.endpoint is the URL where the web service is located

enms.default.sender is the default sender phone number that is used by the web service to send messages with

enms.unicode enables or disables the unicode text representation

The integration jar can be retrieved from this location: https://www.kepler-rominfo.com/static/downloads/com.keplerrominfo.jira.plugins.jjupin/reso
urces/jjupin-integration-provider-2.0.2.jar

SIL Manager

SIL Manager

The SIL Manager allows you to create, delete, edit and view all the SIL programs used in the JIRA environment (Conditions, Validators,
Post-Functions, SIL Service and SIL Runner Gadget).

SIL scripts browser:

The script browser allows you to see and manage all the SIL programs. By default, when opened, the browser will show all existing SIL scripts.

You can click on 'Hide unused' button to filter the view so only the programs which are in use in a condition, validator, post-function, service,
gadget or live fields configuration are visible.

Restart JIRA to put into effect this configuration. Each change needs restart.

http://ems.kepler.ro/emsws/service.asmx?wsdl
https://www.kepler-rominfo.com/static/downloads/com.keplerrominfo.jira.plugins.jjupin/resources/jjupin-integration-provider-2.0.2.jar
https://www.kepler-rominfo.com/static/downloads/com.keplerrominfo.jira.plugins.jjupin/resources/jjupin-integration-provider-2.0.2.jar

The available operations are:

 - creates a new SIL file or folder under the selected directory. New

 - deletes the selected file or directoryDelete

 - renames the selected folder or fileRename

 - reloads the SIL file tree. This is useful when the usage of some programs changes. Refresh

 - shows or hides the unused SIL files scripts.Show/Hide unused

Searching

When a folder is selected, you can start typing in the search box to find files by name. Note that this search is recursive and will also look inside
folders under the currently selected one.

Editor

When a file is selected in the script browser, its contents will be loaded into the editor.

The toolbar allows for quick actions such as checking the script for errors, saving changes, find/replace functionality. Additionally you can
fine-tweak some settings of the editor by clicking the button and changing the values in the pop-up dialog.Settings

Clicking the button will toggle the editor between showing file contents and where the script is used, such as workflow actions,Show Usage
listeners, services, etc. You can also look inside other scripts for declarations where the current file is included. Note that this may take a while if
you have a large number of scripts. Note that while editing a script, pressing will open up an auto-complete suggestions menu.Ctrl+Space

SIL Services & Scheduler

Managing SIL Services

Note
You can only create new files and folders in the non-filtered view. You can toggle this by clicking Show(Hide) Unused.

Warning
Deleting files or folders will also delete them , so all the contents are lost and .from the disk cannot be recovered

Tip
To hide the file browser, click on the vertical bar that separates it from the editor. Additionally you can resize it by dragging the border
between the file picker and editor.

Right-click items in the script browser to see a contextual menu of available actions for the selected file.

Credits for the editor go to .the Ace editor

http://ace.c9.io/

The SIL Services feature allows users to run SIL scripts periodically. Each SIL Service has the following fields/properties:

Name - short name to explain what the service does
Run As - the user to impersonate when running the service
Interval - the interval between two consecutive runs. The input requires a "JIRA-style" formatted interval (e.g. 3d 12h 30m). However,
note that, as opposed to intervals used throughout JIRA, this representation assumes a 24h/day 7days/week timeframe.
Script - the script to run. Note that these scripts do NOT have an .issue context

Managing SIL Scheduler

The SIL Schedulers feature allows users to run SIL scripts after a valid JIRA interval or using a CRON expression.

The jobs are not persistent and they use run once per cluster policy. Please read about scheduling jobs here: . Since thisScheduling Routines
mechanism uses the same scheduling engine, the same notes apply.

Each scheduled job has the following properties:

Schedule - a valid JIRA interval or a CRON expression
Repeatable - if you use a JIRA interval you can choose if the job repeats every interval
SIL File - the SIL Script that will run using the schedule defined by the user
Arguments - the arguments of the job

Info
To edit the actual scripts, please use the .SIL Manager

Availability
This feature is available since jjupin 3.0.8 .

https://confluence.kepler-rominfo.com/display/SIL30/How+It+Works
https://confluence.kepler-rominfo.com/display/SIL30/Scheduling+Routines

1.
2.

3.

SIL Listener

SIL Listener

The SIL Listener allows users to execute a script when certain events are triggered. Each entry for the SIL Listener represents a script the will run
for an event and has the following fields/properties:

Event - mandatory - the event to react to
Run As - optional - user to impersonate when running the script. If left empty, the script will be run by the currently logged in user. This
setting may be necessary if certain scripts require additional privileges than regular users.
Script - mandatory - the script to run when the event is received

SIL Context

When writing the SIL script that will handle an event, the username of the user who triggered the event will be available as the first element in the
 variable and it can be used like this:argv

string callingUser = getElement(argv, 0);

Also, the issue context (all the standard variables and custom field values) will be set to those of the issue where the event was triggered from.
For example, if a SIL script is triggered by an event launched from the issue "TST-123", all the standard variables and custom fields used in the
SIL script will point to the issue "TST-123", unless specified otherwise using the construction %otherIssueKey%.variable.

Aside from the issue events that are configurable from the JIRA UI, the SIL Listener also allows you to react to other events. Note that these
events, since they're not related to an issue will not run in an issue context and using issue standard variables without qualifying them with the key
of the issue does not make sense. Additionally, each event may add additional information to the variable, aside from the information that isargv
common for all events.

The first three elements in the array (string array) are (note that indexing in the array starts from 0) :argv

The user that triggered the event
An internal id for the event that was triggered. Normally you should not need this.

Multiple listener entries can be added for the same event.

Infinite Loop
When selecting a script for an event, please make sure that the script does not use the raiseEvent routine to raise the same event, as
this will cause a loop and crash your JIRA instance.

Info
To edit the actual scripts, please use the .SIL Manager

3. The name of the event as specified in the dropdown list that configures the listener.

The next elements in the array after these are event-specific and are detailed in the table below

Event Additional Parameters Observations/Example

Version
Created

4. version ID

5. the string representation of a structure. You canVersion
retrieve this value and then cast it to a " " structure.Version

Version v = (Version) argv[4];

Version
Archived

Version
Moved

Version
Released

Version
Unarchived

Version
Unreleased

Version
Merged

4. version ID

5. the string representation of a structure. You canVersion
retrieve this value and then cast it to a " " structure.Version

6. merged version ID

7. the string representation of the merged version (castable
to Version, similar to 5).

Even though you can merge multiple versions into one at once,
the JIRA API only provides reference to a single merged version.

Version
Deleted

4. version ID

5. empty (the version is already deleted at this point and
details are no longer available)

Project
Created

4. project ID

5. the string representation of a Project structure. You can
retrieve this value and then cast it to a "Project" structure

Project
Deleted

4. project ID

5. project KEY (the project is already deleted at this point
)and details are no longer available

SIL Custom Field Descriptors

SIL Custom Field Descriptors

Sil custom field descriptors are used to translate the custom field value into a valid SIL value. Most of them are already mapped to a certain
descriptor, but there are some of them which are not.

For the custom fields that are not mapped to a descriptor, the default descriptor is used. This does not guarantee that the descriptor is the proper
one for the field, but it will attempt to determine the correct type.

Steps for the configuration

If you have such fields, here is how to configure the custom field descriptors:

Navigate to to get to the .Administration -> Kepler General Parameters -> Custom Fields SIL Custom Field Descriptors
Search for the custom fields that you use in the SIL scripts and choose the right descriptor.(fields already registered have the list of
descriptors disabled)

http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Version
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Project
http://confluence.kepler-rominfo.com/display/SIL30/Predefined+Structure+Types#PredefinedStructureTypes-Project

1.

2.

3.

4.

5.

6.

Choose the proper descriptor.
The " " message should appear.Saved
Now you can run a test SIL script to verify the behavior of the custom field.

List of Descriptors

Here is the list of descriptors you can choose from:

Default

This descriptor will try to determine the SIL representation of the custom field based on the type of its value.
Boolean -> boolean

Translates a boolean to its SIL internal representation.
Interval -> interval

Translates an interval to its SIL internal representation.

The custom field value can either be the user friendly string representation (1d 2h) or the number of seconds.
User[] -> string []

Translates a collection of Users to a string array.

The collection can also be represented as a single string with values separated by a pipe (|).
The values represent the usernames.
Group -> string

Translates a group to a string value representing the group name.
Number[]-> number []

Translates a collection of numbers to a number array.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

The collection can also be represented as a single string with values separated by a pipe (|).
Option-> string
Translates an option to a string value.
Number -> number

Translates a number to its SIL internal representation.
Boolean[]-> boolean[]

Translates to an array of boolean values.

Custom field value can be a collection of boolean values or their string representation separated by a pipe (|).
Date[] -> date []

Translates a collection of dates to a date array.

The collection can also be represented as a single string with values separated by a pipe (|).
Date -> date

Translates a date value to its SIL internal representation.
User -> string

Translates a user to a string value representing the username.
Label[] -> string []

Translates labels custom field to a string array containing the labels as strings.
String -> String
Translates to a string value.
Interval[] -> interval []

Translates a collection of intervals to an interval array.

The collection can also be represented as a single string with values separated by a pipe (|).

The interval values can be represented either in a user-friendly string form (1d 2h) or in seconds.
Group[] -> string []

Translates a collection of Groups to a string array.

The collection can also be represented as a single string with values separated by a pipe (|).

The values represent the group names.
Cascade -> string []

Translates to an array of string values. First is key, second is value.
Collection(String) -> string []

Translates a collection of string values to a string array.
The collection can also be represented as a single string with values separated by a pipe (|).

Table of custom fields

For every type of custom field available, a list of existing custom fields of the respective type is displayed like in the picture below:

That's it! However, if any exceptions occur, check the log for details on what went wrong.

Live Fields Configuration

If you want your JIRA fields do whatever you want whenever you want, you have to make a and associate it with aLive Fields Configuration
project.

You can do this from Administration -> Add-ons - >Live Fields.

Info
For more information see Live Fields.

Add configuration

To add a configuration you have to click the button.Add Configuration

In the displayed dialog box you have to enter the configuration name and description and you have to choose a SIL File for the Live Fields
Configuration.

where:

Name - Live Fields configuration name

Description - Live Fields configuration description

SIL File - the SIL script that will be executed on every issue page for the associated projects.

You can also edit and remove a configuration by clicking the link. The configuration will be removed if there aren’t projects associateEdit/Delete
with it.

Associate project

Now, you have to associate the configuration with a project. You can do this by clicking the button from the configuration row.Associate

A dialog will be displayed from where you can choose the project to associate with.

You can also remove an association by clicking the red icon at the right of the project you want to remove.Remove project

Associate project from Project page

You can also associate a Live Fields Configuration with a project from the Project page, in Administration. You can do this in the Live Fields
Config tab from the project page.

From the select you can choose the Live Fields Configuration for the project.Configuration

After associating a project with a Live Fields Configuration, the SIL file from that configuration will be executed on every issue page of that project.

SIL Configuration

In this page you can configure specific parameters for the , such as email options, SIL Tree caching and programming warnings.SIL language

Navigate to to get to the administration page for the SIL language configuration:Administration -> Add-ons -> SIL Configuration

1. Generic Configuration

Here you can configure the following parameters:

Charset - charset that will be used to read from files on disk.

Email Templates Directory - path for the directory where the email templates will be stored.

Default Email language - default language to use with internationalized email templates (sender language or receiver language).

Email Sender - see Mail Configuration

For more details regarding email configuration check the section. Mail Configuration

https://confluence.kepler-rominfo.com/display/SIL/Home

2. SIL Tree Caching

For caching your scripts and reduce the time needed to run them you have to configure the next parameters:

Caching Enabled - if enabled, caches the parsed SIL trees for reuse, reducing the time needed to run a cached script by ~50%.

Cache Size - the number of scripts to hold in the cache.

Clear Cache - removes all the scripts from the cache.

3. SIL Programming Warning

This parameter is useful especially when developing new scripts or debugging old ones.

Enable Warning Report - if enabled, will print a report in the logs showing any warnings that has been found during execution of the script
(useful especially when developing new scripts or debugging old ones).

Mail Configuration

The SMTP server used by JJupin is the same JIRA is using. You do not have to configure anything special here.

Email templates

The email templates folder, as well as the email language are configurable and can be set from the SIL Configuration admin page under Generic
Configuration.

At runtime, when a template is requested, it looks for templates in a locale folder within the default template folder. (Ex:mydefaultfolder/en_US/te
, then it will look for - assuming you configured as a template directory).mplate.tpl mydefaultfolder/template.tpl mydefaultfolder

Within the templates, any standard or custom field defined in the issue that called the routine can be referenced using the notation $field$.

1.
2.
3.

Example:

Hello $recipient$!, the sender $sender$ announces you that the assignee for
issue key is $assignee$

At runtime, the plugin will replace with real values the body of the email.

The selection box contains two options:Email Sender

SMTP Direct (default) - will attempt to connect directly to the default SMTP server and immediately send emails
JIRA Mail Queue - will create an item in the default JIRA Mail Queue and will be sent along with other JIRA email notifications when the
queue is flushed.

Remote Systems

Remote SIL configuration

If you enable the remote SIL, you will be able to execute SIL programs on some other JIRA instance running SIL using REST. It does not require
any other library file and it has a lower encoding footprint. The configuration is kept in the rest-client.properties file.

REST:

Requires only katl-commons, this gives you liberty
Documentation is here

Resolution when calling a remote system

As you know, you can call a remote system via a invocation. The resolution of the system is as follows:call() routine

Try to see if the name of the system is empty ('') or the string 'local'. If yes, it will call a local script
Next, try to find the name of the system as defined by REST. If it is defined, it calls the REST remote system
If it is not defined, error

REST Remote Systems

REST Remote Systems

Using REST remote systems you will be able to execute SIL programs on some other JIRA instances running SIL.

A file named ' ' should be placed in the kepler directory (along with the licenses). For each system, you should configure therest-client.properties
URL and the connection details.

Example:

The following defines two remote systems: 'REMOTE' and 'ANOTHER':

Warning
$recipient$ and will only work if the addresses belong to JIRA users and not some external email addresses.$sender$

Tip
You can create, edit, delete and upload email templates using the built-in browser and editor in the .administration page

https://confluence.kepler-rominfo.com/display/SIL30/call

rest-client.properties

REMOTE=http://192.168.17.112:8080
REMOTE.user=admin
REMOTE.password=admin

ANOTHER=http://192.168.17.113:8080
ANOTHER.user=admin1
ANOTHER.password=admin123

An easier way is to manage the REST remote systems from the special administration page at Administration > Add-ons > REST Remote
Systems

Here you can add, edit and delete REST remote systems in an instance.

In the section you can specify the Allowed REST Users for calling SIL scripts using the REST service.Local REST Service Parameters

SQL Configuration

SQL Configuration

To execute the SQL function, one must define first the datasource. By default, JIRA runs in Tomcat, so the following example applied to Tomcat
only. The user should refer to the application server manual on how to define a datasource.

1. First, make sure you have the SQL driver in JIRA_INSTALL_DIR/lib directory.

2. Then, open with your favourite text editor file. Enter your datasource there, for instance:JIRA_INSTALL_DIR/conf/context.xml

<Context>
 <Resource name="TestDB" auth="Container" type="javax.sql.DataSource"
 username="sa" password=""
 driverClassName="org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:/tmp/somedb;create=true;"
 />
<Context>

3. Restart JIRA.

4. Check the tomcat logs for errors

You should be now ready to use the datasource you just defined via the () calls, the JNDI datasource name you just created is named "sql TestDB
".

LDAP Configuration

LDAP configuration

We had the option to read the LDAP parameters values from osuser.xml file, but some customers wanted lookaside LDAPs (and not integrated
ones), thus we'll keep this config aside (and most possibly duplicated, but what can we do?).

Go to . The following screen appears:Administration -> Add-ons -> LDAP Configuration

Example settings:

URL = ldap://localhost:389
BIND USER = cn=binduser,ou=IT Group,dc=alpha,dc=local
PASSWORD = passw0rd
BASEDN = dc=alpha,dc=local

Note
The above example works for HSQL DB, which is the embedded JIRA database. You should use correct driver class and a correct URI
syntax for your database. More examples for different databases can be found at .Data Source Configuration

Note
The Guide on how you should configure a datasource is here: Apache Tomcat: Configuring a Datasource

Warning
Right now, only the Microsoft Active Directory is supported, though it might work with other systems too (e.g. works with OpenDS).
However, we are eagerly waiting for requests to extend this functionality to different LDAP servers.

https://confluence.kepler-rominfo.com/display/SIL/sql
https://confluence.kepler-rominfo.com/display/DBCF/Data+Source+Configuration
http://tomcat.apache.org/tomcat-6.0-doc/jndi-datasource-examples-howto.html#Database_Connection_Pool_%28DBCP%29_Configurations

Configuring a SIL JIRA Service

Configuring a SIL JIRA Service

If you would like to periodically run a SIL script, you will have to install JJupin as a service. Here is how to do that:

Go to Administration -> Services
Give your SIL service a name
Under "Class" put com.keplerrominfo.jira.plugins.jjupin.services.SILService
Set the delay.

Next, you will be presented with a configuration screen, where you should:

Enter the to the file containing the SIL scriptabsolute path
Choose a user the service will run as (if the user doesn't have administrator privileges, some SIL routines might not work).

That's it! However, if any exceptions occur, check the log for details on what went wrong.

Tip

1.
2.

1.
2.

Configure JIRA Logging

Configure JIRA Logging

JIRA uses Log4J as a logging system. We're interested in output messages produced by our plugins so you will need to configure logging.

Open with your favorite text editor.JIRA_HOME/atlassian-jira/WEB-INF/classes/log4j.properties
Append the following lines (add them at the end):

log4j.category.com.keplerrominfo = INFO, console, filelog
log4j.additivity.com.keplerrominfo = false

For debug add these 2 lines into file:JIRA_HOME/atlassian-jira/WEB-INF/classes/log4j.properties

log4j.category.com.keplerrominfo = DEBUG, console, filelog
log4j.additivity.com.keplerrominfo = false

Licensing

Dual Licensing support

Versions 2.0.4 and up support both Kepler and Atlassian licenses, but you only need one valid license to run the plugin, which can either be
provided as the file, or as the key generated via the .jjupin.lic Atlassian Marketplace

The order in which the licenses are checked is:

Atlassian License
Kepler License

It is that you do not install both licenses at once, as this might yield unwanted results. For example, consider that youstrongly recommended
have an Atlassian License with the support date expired and one valid Kepler License. In this case you cannot update the plugin, because the
Atlassian License is checked first and its support date is expired.

Atlassian Licensing

The Atlassian Marketplace allows you to easily purchase or generate an evaluation license for .JJupin

You can also try out our page.SIL Services & Scheduler

Note
If you do not perform this configuration step, some routines such as () will not output messages.print

Warning
Setting the level to DEBUG will output a lot of messages and it will hurt your performance. Do this only when instructed by the Kepler
Team.

Info
For more information see .JIRA Documentation: Logging and Profiling

Note
To support Atlassian licenses you need to install installing JJupin.katl-commons 2.0.4+ before

https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.jjupin
https://confluence.kepler-rominfo.com/display/SIL/print
http://confluence.atlassian.com/display/JIRA/Logging+and+Profiling

Using Universal Plugin Manager 2.0.1+

After generating the license key, all you have to do is access the section in your JIRA instance and paste the key intoAdministration-> Plugins
the corresponding plugin textbox.

Kepler Licensing

The Kepler license is a file () which must be placed in the <JIRA_HOME>/kepler folder. You can either generate and download a freejjupin.lic
evaluation license by registering on and accessing the section, or you can purchase the plugin by following .our site Licenses these instructions

You can view details for all the license files situated in the kepler folder, by accessing the from Kepler Licenses page Administration >
 menu:Add-ons > Kepler Licenses

The page shows the expiration and maintenance date, user limit and validity message for each selected kepler license.

If the license is expired, user limit is exceeded or license is targeted for a different JIRA server id, a red colored message shows the status:

http://jira-plugins.kepler-rominfo.com/x/
http://jira-plugins.kepler-rominfo.com/x/pricing/id/3

If kepler license is close to expiration date (less than 10 days remaining), a warning message is displayed, showing the remaining time:

Uninstall

Uninstall via Atlassian Universal Plugin Manager

This page shows the steps to uninstall the plugin using the Universal Plugin Manager.

Manual Uninstall

At first sight, this seem a little bit complicated but actually it isn't. All it has to be done is to remove the plugin manually and delete its tables from
the internal database.

Manual Uninstall
Uninstall via Atlassian Universal Plugin Manager

Manual Uninstall

Reminder
Don't forget that you need only valid license to run the plugin.one

Technical info
Starting with an new plugin, called , will be automatically installed by any paid add-on (includingkatl-commons version 2.5.5 Warden
JJupin 2.5). This plugin is responsible with the management of licenses (both JIRA and Kepler). Do not attempt to uninstall it without
removing first all the Kepler paid add-ons.

Removing an unused license
If you want to remove a no longer used Atlassian license, this can be done in UPM (for UPM 2.0.1+) by removing the old license key
and clicking Update. To remove a Kepler license, you have to delete the correspondent .lic file from the kepler folder. Note that any
change to the Kepler license requires a server restart.

Uninstall manually

At first we will uninstall the plugin manually and finally we'll remove the corresponding tables in the internal database.

Uninstall the plugin

Goto the folder where Jira server has been installed.

Access and manually delete JJupin plugin.<JIRA_APPLICATION_DATA>/plugins/installed-plugins

Remove the tables

You can go to the internal database administration tool.

You can use a visual tool or a command line tool and remove the following tables in your database:

krunnablesils
klistenersils
jjlf_config
jjlf_project
jjlf_category

Restart the server

Now you can restart Jira server

Uninstall via Atlassian Universal Plugin Manager

Uninstall via Atlassian Universal Plugin Manager

At first we will uninstall the plugin and finally we'll remove the corresponding tables in the internal database.

Uninstall the plugin

If you are not familiar with Universal Plugin Manager (UPM), please read before we begin.this document

1) Log in as administrator and go to Administration->Add-ons->Manage add-ons

2) Search for JJupin plugin in `User-installed add-ons` section and click on `Uninstall` button

You need to have access where the Jira server has been installed.

http://confluence.atlassian.com/display/JIRA/Managing+JIRA%27s+Plugins

3) Press `Continue` when the uninstall confirmation dialog box appears

4) A message "successfully uninstalled" should appear

Remove the tables

You can go to the internal database administration tool.

You can use a visual tool or a command line tool and remove the following tables in your database:

krunnablesils
klistenersils
jjlf_config
jjlf_project

Now you can delete JJupin corresponding tables.

jjlf_category

User guide

In this section, you will learn about the friendly user interface that JJupin offers and its capabilities.

Table of Contents

Writing Validators, Postfunctions and Conditions
Transition View
Workflow View
Workflow Viewer
SIL Runner Gadget

Parameters in SIL Runner Gadget
Live Fields

How 'Live Fields' work
Supported fields and graphic elements
Accessing the current screen
Routines

lfAllowSelectOptions
lfDialogMessage
lfDisable
lfDisableTab
lfEnable
lfEnableTab
lfExecuteJS
lfGlobalMessage
lfHide
lfHideAllExcept
lfHideFieldMessage
lfHideTab
lfInstantHook
lfRedirect
lfRefreshScreen
lfRestrictSelectOptions
lfSet
lfShow
lfShowAll
lfShowFieldMessage
lfShowTab
lfWatch

Additional Routines
runnerLog

Writing Validators, Postfunctions and Conditions

Writing Validators, Postfunctions and Conditions

After you installed JJUPIN plugin, you should go to your JIRA's page and create a workflow, associated with a project.Administration->Workflows
Since you cannot modify the workflow while it's active, you must create a draft workflow, as specified in the JIRA documentation, by pressing the
"Create draft" link. The result should look like in the below excerpt.

Note
Step-by-step guides, previews, demo images and screenshots were made under JIRA 6.x.

Info
Before using JJupin check out the for a better grasp of SIL usage and capabilities.Simple Issue Language documentation

http://confluence.kepler-rominfo.com/display/SIL/Home

Clinking on a transition will show the transition's conditions, validators and postfunctions.

You should always keep in mind that:

1. Whenever an issue advances from one state to another the postfunction will be called.

2. The transition is made possible only if the conditions are fulfilled. Therefore, a condition return to signal that the condition ismust true or false
fulfilled or not

3. The validators must validate the data before transition is fired. Subsequently, a validator is entitled to return and optionally true or false the field
 you want to show in the interface.and the error message

An important consequence of the above model is that conditions and validators should not have side-effects. In fact, JJupin is discarding
modifications of the issues, allowing them to occur in the postfunction only, but it cannot discard modifications made on another database, for
instance, applied using the sql routine (see () routine for details).sql

To create conditions, validators and postfunctions, press the corresponding add link, found at the top of the workflow management tab.

The following image shows the creation of a test post-postfunction:

https://confluence.kepler-rominfo.com/display/SIL/sql

After you'll press the "Add" button, you will be ready to write your SIL (in this case, a SIL postfunction)

By providing a meaningful name to your program and by pressing the "Add" button, you are now ready to extend your JIRA Workflow:

Returning into the transition screen, your newly added post-function will be reflected in the view:

You can create a new script or pick a script that was already created (or even used for other purposes) in the silprograms folder.

Warning:

Modifying Issues
You should modifying issues in conditions and validators, as they are supposed to be read-only. Do not yield to that temptation!avoid
You should modify issue values (or create new issues, or change anything) in the postfunction only.

Info
Your SIL program will be saved on the disk in the folder specified in the configuration. The filename is obtained by removing any invalid
characters from the program name you entered and appending a number to help you browse through different versions of the same file.

Changing the Default Save Path

When editing or creating a new condition, validator or post-function, you will notice a link saying "Click here to change the path". By default,
JJupin saves all the programs in a () folder, but you also have the ability to select a different one. By clicking on the link, you will beconfigurable
presented with the following view:

Here you can choose an already existing folder to save your file into and even create and delete new ones.

The name of the file your program will be saved as is calculated by removing any invalid characters from the program name and appending a
version number at the end.

Return codes:

Returns codes are different for validators, conditions and postfunctions

For validator:

return false, "assignee", "We have failed, assignee is not ok";

The first field tells us that we have failed, the second indicates the field, the third is the message that will be set on the user interface. For the
moment, the filed name must be a "bare" name. That means that it should comply with the name given to the HTML objects displayed (e.g: for
customfields it will be customfield_xxxxx). One can easily inspect the HTML source of the edit screen to see the "bare" name of a field.

For condition:

return false; //to signal that condition is not fullfilled.

Just tell JIRA this condition is not fullfiled.

For postfunctions:

return;

return ends the program, any values are ignored.

Note
For best experience, we recommend Google Chrome or Mozilla Firefox.

See also:

Transition View

On this page:

Introduction
Editing Code

 Highlighting
 Auto-completion
 Indenting
 Search and Replace

Checking the Program
Changing the Default Save Path
See Also

Note
When writing postfunctions, conditions or validators for the transition, make sure that the SIL program is the last step of"Create issue"
the transition. This is necessary because we need JIRA to create the actual issue and save it to the database using the input
parameters before we can access it

Note
In general, it's a good idea to place your postfunctions all standard postfunctions.after

JIRA Documentation: Configuring Workflows

 JJUPIN Tutorials

This page is restricted since I'm not sure whether we should keep it or not.

http://confluence.atlassian.com/display/JIRA/Configuring+Workflow
https://confluence.kepler-rominfo.com/display/TR

1.
2.
3.
4.

Introduction

The user-friendly interface offers a number of visual aids that will help you write complex SIL programs in no time.

Editing Code

 Highlighting

SIL-specific syntax highlighting can considerably improve the readability of your code.

There are four types of highlighting:

keywords - words like if, do, while, else, return, etc. are colored in brown
datatypes - datatypes like string, number, boolean, etc are colored in blue
constants - numbers, strings, etc. are colored in green
brackets - when the cursor is near a bracket, its background will become green or red depending on whether that bracket has a closing
pair or not.

 Auto-completion

Help Tip
When writing SIL programs, click the button for a shorter version of this guide.Help!

The SIL Editor also offers auto-completion capabilities by pressing .Ctrl+Space

The list of suggestions contains , as well as and local variables defined up to that point. The of thestandard variables routines UDRs scope
variables is also taken into account. In the example above, you can see that the and variables are defined in the statement, souser name for
their scope is the block. Variables that are not in scope (for example the parameters of the doSomething() function) will not be shown in thefor
list. Therefore, if you write outside the block, variables and will not be shown in the list.for name user

Another useful feature is the dynamic population if the suggestions list and the auto-selection if the list has only one entry.

 Indenting

Selecting a whole block of code and pressing will indent it further to the right. To decrease indentation (move it to the left), select the blockTab
and press .Shift+Tab

 Search and Replace

Tip
Notice that the suggestions list is NOT case-sensitive.

Note
UDRs and variables defined inside programs included with the , will not be visible in the suggestions list.include statement

https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=SIL&title=_Standard+Variables+-+TBD
https://confluence.kepler-rominfo.com/display/SIL/Routines
https://confluence.kepler-rominfo.com/pages/viewpage.action?pageId=21693462
https://confluence.kepler-rominfo.com/pages/viewpage.action?pageId=21693462
https://confluence.kepler-rominfo.com/display/SIL/Inclusions

The SIL Editor also offers search and replace capabilities using the panel on the upper side of the editor.

Notice that all the occurrences of the searched term are highlighted in yellow. You can replace the current occurrence (highlighted in blue) by
pressing or you can replace all of them using the button. You can cycle through the search results by repeatedly pressing Replace Replace All S

.earch

Checking the Program

To help you through each step of writing a SIL program, the editor also offers a live checking capability using the button.CHECK

Feel free to use this to check for errors at any time.

If the program is correct, a message written in green will apprear saying "Syntax Ok.". Otherwise, an error written in red and containing detailed
information will appear. You will also notice that if there are errors the line where they occurred will be highlighted in red.

Tip
To un-highlight search results press .Esc

Changing the Default Save Path

When editing or creating a new condition, validator or post-function, you will notice a link saying "Click here to change the path". By default,
JJupin saves all the programs in a () folder, but you also have the ability to select a different one. By clicking on the link, you will beconfigurable
presented with the following view:

Here you can choose an already existing folder to save your file into and even create and delete new ones.

The name of the file your program will be saved as is calculated by removing any invalid characters from the program name and appending a
version number at the end.

See Also

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

Tip
To discard the error notifier, just click it.

Note
For best experience, we recommend Google Chrome or Mozilla Firefox.

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

Note: Our SIL editing capabilities are based on a modified version of .CodeMirror

Workflow View

Workflow View

This view will help you browse through your workflow without having to open the program every time to see what it does.

On the first line we have the name of the SIL program
The second line shows the of the file which contains the actual code.path
After that, you have a short of the program, which you can write by commenting on the first lines (max. 3 lines) in your code.description
For example, the program you see on the right contains "//Your SIL code should go in here" on the first line.
Finally, you have the which tells you if the program is correct. If there are any errors, open the program for a more detailederror notifier
description of the cause. If the program is correct, this line will be blank.

Workflow Viewer

Workflow Viewer

Displays all information needed for a workflow or a draft workflow, (optional) associated to a given project. To get access to workflow viewer, you
have to be an administrator.

Usage

http://codemirror.net/

Navigate to Administration Page Administration -> Add-ons -> Workflow Viewer.

You can choose the to see the associated workflows, including draft workflows (if any), for each issue type associated OR you canJIRA project
choose directly the workflows or draft workflows to display all information about.

The report look like this:

Initial state - indicates the step nameinitial
Transition - the name of the linked status
Final state - the step namedestination
Conditions - the text representation of the including SIL Conditions and their detailed informationconditions tree
Input data - the when executing transitions. An input screen can contain multiple tabs and the information displayedinput screens
contains all input data, e.g. Custom Fields names and the associated IDs
Validators - the list of on the current transition, including SIL Validators and their detailed informationvalidators

Post functions - the list of on the current transition, including SIL post-functions and their detailed informationpost functions

At the end of the report you'll find the additional information about the Validators, Conditions and Post Functions present in the edit or view
screens included in the issue screen scheme, associated to the current issue type:

When clicking on you will see the contents of all SIL programs associated to the Validators, Conditions and PostShow All SIL programs
Functions for each transitions. You can also show the contents of each SIL program by clicking the link near the SIL indicated location. Youshow
can collapse all the SIL programs at once by clicking the link, or one by one by clicking the link for each of them.Hide All SIL programs hide

SIL Runner Gadget

Info
If there is no project selected for workflow viewer, then there will be no associated issue type to a given workflow. So there will be no
such issue screen scheme associated and the information about the edit or view screen will be missing.

Another useful feature of JJupin is the ability to randomly run SIL scripts using the SIL Runner Gadget. This allows you to configure aon demand
list of scripts that can be run at any time directly from your Dashboard.

Configuration

The is only available to JIRA Administrators and System Administrators and allows them to manage the list of available SILconfiguration screen
scripts. They can add and delete scripts or edit the parameters of a .runnable SIL script

Important!
Since JJUPIN 3.0.8, you can now customize the gadget to be more user friendly, asking more nicely. See more details parameters her

.e

Important!
Bare in mind that scripts ran this way ! Therefore, constructs and keywords like 'key' do not have ado not have an issue context
meaning here (they are undefined!). You need to first select the issues to work with, and prefix any standard variables with the issue
key!

To add a script to the runner you must give it a name, description and select an already existing file containing the script.

The gadget also offers the ability to restrict script usage to specific users or groups by choosing a security option:

 Public - the script will be available for any user

 Group - the script will be available only if the currently logged in user is a member of the specified group (will display a group picker)

 User - the script will be available only if the currently logged in user is the same as the specified one (will display a user picker)

 - the script will available only if the currently logged in user is in a specific role on a specific project (will display a projectProject role
picker) - (available since JJUPIN 3.0.8)

Usage

Example

When you select a script from the list, its will automatically be filled in below.description

The field is used to pass values your SIL program. To add a parameter click the button.Parameters into Add Parameter

Info
To edit the actual scripts, please use the .SIL Manager

The parameters will be passed into the program using the variable. The values will be available using a construct like argv argv["parameter_na
 or For the above example, the number of rockets can be retrieved using argv["rockets"] or argv[2].me"] argv[position].

Once you run the script, the program console will be displayed.

Example code

runnerLog("Preparing to start a war...");

runnerLog("Building tanks...");
runnerLog("Built " + argv["tanks"] + " tanks.");

runnerLog("Gathering infantry...");
runnerLog("Gathered " + argv["infantry"] + " brave men.");

runnerLog("Fueling rockets...");
runnerLog(argv["rockets"] + " ready.");

runnerLog("Dispatching orders...");
return "Good job! The world is now at war!";

Parameters in SIL Runner Gadget

Parameter names must be unique, otherwise the most recent definition will overwrite previous ones. This includes parameters with no
name.

Tip
 Parameters can be reordered using drag and drop.

You can use the routine to print info in the console as the program runs. Note that the console buffer is limited to 512 linesrunnerLog
every ~0.5 sec and the console will only display the latest 512 lines.

Tip
You can return as many values as you need, regardless of their type.

Parameters in SIL Runner Gadget

Since , SIL Runner Gadget can be customized in a much user friendly way, asking parameters more nicely. JJUPIN 3.0.8

In order to configure such an entry, you will need to set up the following components:

Name - the name of the configuration
Description - the description of the configuration
Execution script - the script that will be executed
Parameter script - an optional script that will dynamically insert advanced parameter fields on the configuration's run screen.

 If no parameter script is given, the user will be able to add simple input fields for text parameters (we maintained the old
functionality).

Example

The execution script is the script that will be executed. If there are any parameters declared in the parameter script, their values will be received
and interpreted here. In order to get the values of the parameters, you will need to use the . parameter retrieval routines

https://confluence.kepler-rominfo.com/display/SIL30/Parameter+Retrieval+Routines

In our case, the execution script uses the routine and can return as many values as you need, regardless of their type.runnerLog

Example code

date start_date = gadget_getDateValue(argv, "Start Date");
string tanks = gadget_getSingleValue(argv, "Tanks");
string infantry = gadget_getSingleValue(argv, "Infantry");
string rockets = gadget_getMultiValues(argv, "Rockets");
runnerLog("Preparing to start a war...");
runnerLog("The war will start at this date: " + start_date);
runnerLog("Building tanks...");
runnerLog("Built " + tanks + " tanks.");
runnerLog("Gathering infantry...");
runnerLog("Gathered " + infantry + " brave men.");
runnerLog("Fueling rockets...");
runnerLog(rockets + " ready.");
runnerLog("Dispatching orders...");
return "Good job! The world is now at war!";

The parameter script contains the declaration of the parameters that will be used in the execution script. In order to declare the parameters you
will need to use the .input type routines

Example code

gadget_createDatePicker("Start Date", currentDate(), true, "Choose a start
date");
gadget_createInput("Tanks", "500", true, "The number of tanks");
gadget_createInput("Infantry", "1600", true, "The number of tanks");
gadget_createCheckboxGroup("Rockets", {"A big one", "A lot of small ones"},
"", false, "Do you want to use rockets?");

The parameters can be set to a default values, which can be edited before running the execution script. Using the scripts above, the SIL Runner
Gadget will look like this:

https://confluence.kepler-rominfo.com/display/SIL30/Input+type+routines

The execution of the script above produces the output below:

Live Fields

Live Fields

You want to restrict some users visibility on issue fields? Or you want to change issues fields values automatically when a field value changes?
Or, you just want to execute your own javascript code? Now, you can do this with Live Fields.

See how Live Fields work.

How 'Live Fields' work

Live Fields
What's the idea?
Screens where we can use Live Fields
Example

Writing the code

Create a Live Field Configuration
In short:
Result:

Let's test it !

Live Fields

You want to restrict some users visibility on issue fields? Or you want to change issues fields values automatically when a field value changes?
Or, you just want to execute your own javascript code? Now, you can do this with Live Fields.

Live Fields is a JJupin extension that used for example to hide, disable or set the values for JIRA fields. This contains several routines for SIL
actions happen automatically, while editing or viewing the issue.

What's the idea?

To understand how Live Fields work,we have to define some notions first:

An action is the action executed on the screen. It can be , , , etc; each action can be called from SIL using itshide show disable
corresponding routine (, , , etc)lfHide lfShow lfDisable
A (or, if you prefer, the) represents a SIL script file that is executed when an event is triggered. You canhook script callback script
create a hook using the routine.lfWatch
The (or) is the initial script executed when the view issue / edit issue is called. This is actually yourmain script configuration script
entry point in JJupin .Live Fields

Since we like UML, please take a look at the following sequence diagram:

You can call also the Live Fields routines from postfunctions, and not only from the main configuration script or hooks!

1.

As you can see, the sequence of operations is actually very simple

When the JIRA issue page is loaded the for the issue project is retrieved and the is executed.Live Fields Configuration Main Script

Remember: the represents the SIL Script file from the of the issue project. The coMain Script Live Fields Configuration Main Script
ntains the actions and the hooks that will be executed every time an issue page is loaded. The main script can be associated with
many projects, to ease the configuration for projects having similar screens. Not all pages in JIRA trigger Live Fields main script (see
below).

 2. After the is executed, the hooks will be registered and the results will be sent to the browser where the actions will apply. Main Script

Remember: An is represented by the live fields routines that changes the fields state, like action / , / .lfHide lfShow lfDisable lfEnable
A hook represents a SIL Script file that is executed when an event is triggered; hooks are created using routine lfWatch .

 3. When an user interacts with an element (JIRA field) that has a hook registered for it, the event is triggered and the is executed.Hook Script

Take care: The can also contain actions and hooks. The difference is that the actions from the areHook Script Hook Script
executed only in the current screen (the screen where the event was triggered).

Screens where we can use Live Fields

It is of paramount importance to understand that Live Fields can only be used in certain screens. You cannot use Live fields for the administration
pages of JIRA, for instance (we could do it, but has really very little importance in our mind ..)

The following table summarizes the screens loading the Live Fields (configuration):main script

Screen
category

Screen Notes

Issue
screens

View issue Is the normal screen for viewing the issue. With the introduction of inline edit, please see the note
below

 Edit issue Here you should be able to implement on-screen logic, e.g. if the customer importance combo-box
goes on important, increase priority.

 Create issue Same comment apply here

 Transition screen

Issue
Navigator

Issue navigator Issue navigator screens are supported as the above

 Issue
navigator->Edit

 Issue
navigator->Transition

As a general note, you should not worry if you're requesting an action for a field that is not on the screen. Live Fields is smart enough to skip over
the non-existent fields.

If necessary, arbitrary javascript, residing in the folder on the server, can be executed on any above screen. However, try tosilprograms
minimize the amount of javascript, since it makes your JIRA install non-portable across versions of JIRA.

Example

Let’s take the following example for you to understand better the Live Fields concept. Let’s say you want to set the priority of the issue at Major
when the summary contains the "important" word.

Writing the code

First of all, let's create the .Main Script

Go to -> Administration Add-ons -> SIL Manager.

Click the folder and the button. Create a new SIL file and name it MainScript.sil like in the image below.silprograms New-> New file

This will be the and we will configure it later.Main Script

In the MainScript.sil file that you create write the following code.

MainScript.sil

lfWatch("summary", {"summary"}, "HookScript.sil" , {"keyup"});

When entering on the issue page, the will run and attaches a listener for the event, for the field. When the event isMainScript.sil keyup summary
triggered the script from the will run.HookScript.sil

Next, let's create the file in the way you created the . For our example, you should write the following code in the HookScript.sil MainScript.sil Hoo
 file:kScript.sil

HookScript.sil

if (contains(argv["summary"], "important")) {
 lfSet("priority", "Major");
 lfShowFieldMessage("priority", "Priority changed", "INFO");
 }

Create a Live Field Configuration

So, we created the two scripts, but before testing it we have to create a Live Field Configuration and associate it to a project.

To do this you have to follow the next steps:

Go to -> Administration Add-ons -> Live Fields

Click the buttonAdd Configuration

In the displayed dialog box you have to enter the configuration name and description and you have to choose a SIL File for the Live
Fields Configuration. As we said before, the represents the SIL Script file from the Live Fields Configuration, so let's chooseMain Script
it for our configuration:

Info
See more information about managing your SIL Scripts.

Click the button and the Live Field Configuration will be createdAdd

Now, you have to associate this configuration to a project. To do that, click the link.Associate
From the displayed dialog you can choose the project(s) to associate the configuration with.

In short:

You created two scripts, the and the .MainScript.sil HookScript.sil

You created a Configuration that contains the and associated it with a project (with ProjPM, in our case).Live Fields MainScript.sil

Result:

Every time we enter on an issue page of ProjPM project, the is executed and the hook is registered. When we edit the issueMainScript.sil
summary, the keyup event is triggered and the is executed.HookScript.sil

Info
You can find more information about .here Live Fields Configuration

Let's test it !

On the edit screen of the issue you start typing the summary for the issue. Every time the event is triggered a call to the server is madekeyup
and the hook.sil is executed. The server will receive the values of the related fields (the second parameter from the routine), in our caselfWatch
the value of the summary field.

For example, we have the following issue:

We start editing the summary field.

We typed " im", so the event was triggered three times. That means the hook.sil was executed three times, and it received the following values for
summary field: "test ", "test i", "test im". This are the values passed from argv["summary"].

When the field will contain the word, the priority will be set as Major and a message will be displayed.summary "important"

Supported fields and graphic elements

On this page:

Supported JIRA fields

Info
You can find the Live Fields routines .here

Info
More information about SIL programs in Simple Issue Language documentation.

https://confluence.kepler-rominfo.com/display/SIL

Examples
Supported JIRA custom field types

Example
Supported JIRA Software custom field types

Example
Events

Supported JIRA fields

Here is a list of JIRA fields supported by Live Fields:

Field Explanation Usage

Project The project name for the issue. Available since v. 2.6.1 (for JIRA 6.x). project

Summary The summary field of the issue. summary

Type The issue type field. issueType

Priority The priority field of the issue. priority

Status The status field of the issue. status

Resolution The resolution field of the issue. resolution

Affects Version/s The affected versions field of the issue. affectedVersions

Fix Version/s The fix versions field of the issue. fixVersions

Security Level The security level field of the issue. security

Component/s The component field of the issue. components

Labels The labels field of the issue. labels

Environment The environment field of the issue. environment

Description The description field of the issue. description

Assignee The assignee field of the issue. assignee

Reporter The reporter field of the issue. reporter

Due The due date field of the issue. dueDate

Created The created field of the issue. created

Updated The updated field of the issue. updated

Resolved The resolved field of the issue. resolved

Estimated The issue original estimate. originalEstimate

Remaining The issue remaining estimate. estimate

Logged The issue time spent. timeSpent

Votes The vote field of the issue. votes

Watchers The watchers field of the issue. watchers

Edit Submit Submit button from Edit screen. editSubmit

Transition Submit Submit buttons on Transition screens. transitionSubmit

Cancel Cancel link from Edit screen, Transition screen, Create screen. cancel

Create Issue Submit Submit button from Create Issue screen.(the pop-up screen)

Available since v. 3.0.3 (for JIRA 6.x).

createIssueSubmit

Issue Create Submit Submit button from Create Issue screen.(with the Transition screen)

Available since v. 3.0.3 (for JIRA 6.x).

issueCreateSubmit

Attach Files The Attach Files drop-down item from button More from the view screen of an issue.

Also, the drag and drop from all screens of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

attachFiles

Attach Screenshot The Attach Screenshot drop-down item from button More from the view screen of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

attachScreenshot

Delete attachments The Delete icon from the View screen of an issue and from the Manage Attachments screen.

Available since v. 3.0.5 (for JIRA 6.x).

deleteAttachment

Attachments The Attachments module from the view screen of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

attachments

Add Attachments The Add Attachments icon from the view screen of an issue.

Available since v. 3.0.5 (for JIRA 6.x).

addAttachments

Manage Attachments The Manage Attachments drop-down item from Attachments module.

Available since v. 3.0.5 (for JIRA 6.x).

manageAttachments

Viewable by The Viewable By option of the Comment field from View, Edit, Transition screens.

Available since v. 3.0.8 (for JIRA 6.x).

viewable_by

Examples

An example for it would be to hide the field. You do that, using the lfHide function like this: Estimated

lfHide("originalEstimate"); //this will hide the estimated field

The image shows time tracking before hidding the estimated field(on the left side) and after hidding it(on the right side).

Important!
You have to use them in Live Fields Routines with the key indicated in the column of the above table.Usage

Important!
Create Issue Submit and - both of them are used for the Create button from the create screen.Issue Create Submit

If the button is accessed from an issue then it will appear the Create Issue pop-up and you have to use .Create Issue Submit

If the button is accessed for example from the Manage Add-ons screen, first it will appear a transition screen - you have to access the
Next button if you want to create a new issue. For this situation you have to use .Issue Create Submit

For and you have to use both of them if you want to control all the Create Issue screensCreate Issue Submit Issue Create Submit
using live fields.

Tip
Some Live Fields routines can interact with other elements of the issue as well. Check out each routine's page to see any additional
elements it can interact with.

If you want to set the of the issue, use the lfSet function like this:Type

lfSet("issueType", "Task"); //this will set the issue type with the Task
value

Supported JIRA custom field types

Live Fields also supports the following custom fields:

Number Field
Text Field
Free Text Field
URL Field
Labels
Single Version Picker
Version Picker
Cascading Select
Radio Buttons
Date Picker
Date Time
User Picker
Multi User Picker
Group Picker
Multi Group Picker
Multi Checkboxes
Multi Select
Select List
Project Picker

Example

Let's say you have a custom field named . The custom field id is 10100. You can hide it like:Number Field count

lfHide("customfield_10100") //hide the custom field by its id
lfHide("count") //hide the custom field by its name

Supported JIRA Software custom field types

Since JJUPIN 4.0.0, we also support the next JIRA Software custom fields:

Epic Name
Epic Colour
Epic Label
Epic Link

Warning
When using custom field name make sure you don't have more than one custom field with the same name. The action will apply only on
the first created custom field.

Info
You can also use aliases to apply actions to custom fields. More about custom fields aliases see .here

https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=SIL&title=JIRA+instance-independent+programming

1.
2.
3.

Epic Status
Rank
Sprint
Story Points
Flagged
Business Value

Example

Let's analyze the "Epic Link" custom field. The custom field id is 10001. You can hide it as follows:

lfHide("customfield_10001") //hide the custom field by its id
lfHide("Epic Link") //hide the custom field by its name

Events

Watching events seems simple (check routine). But what exactly are the events ? The answer to that is actually very simple: all of themlfWatch
are . We decided to use them directly becauseJavaScript events

People already know these events
We wanted to offer you a broad range of events to watch on
People may need to add additional JS in the page. Mixing them would mean that the programmer would have to mentally map events
from JJupin to JS and the other way around. Yak!

Now let's see what we can do with these fields and events .here

Accessing the current screen

Starting from version 2.5.3 of JJupin, the "screen" argument was passed to the Live Fields scripts, so you can easily filter your actions based on
which issue screen you are operating.

Syntax

argv["screen"]

Description

Returns the actual screen on which the current Live Fields SIL script is executed (for the initial script, as well as for any hooked script).

Returns

A string from the following list of predefined values, corresponding to the actual issue screen:

Screen Argument Value

View Issue view

Edit Issue edit

Create Issue create

1.
2.

Availability
This feature is available since

JJUPIN 2.5.3
katl-commons 2.5.5

Create Sub-Task create-subtask

Transition Screen trans_<transition_id>

Here are the Jira's transitions and their correspondent ids:

Example

This can be useful when you want to apply certain Live Fields actions only on editable screens for example, and not on view issue page.

Let's say that you want the assignee to always be set to user "x" when creating a new issue with a custom field having the value Defect Developm
, without letting the user modify it.ent

At the same time, you want to set by default the current user as assignee whenever it accesses the "Resolve Issue" transition screen, but keep it
editable.

This can easily be achieved by checking the "screen" argument and applying the live fields actions on field assignee, based on the argument's
value, in the initial script, as well as in the hook script:

init.sil

if(argv["screen"] == "trans_5") {
 //on Resolve Issue screen
 lfSet("assignee", currentUser());
}
//set the hook script for the Defect custom field
lfWatch("Defect", "Defect", "hook.sil");

Support for the "Create Sub-Task" screen is available since and .JJUPIN 2.5.5 katl-commons 2.5.8

You can easily determine a particular transition's id, by checking your workflow administration page. They are listed as: Transition (id).

hook.sil

if(argv["screen"] == "create") {
 //on Create Issue screen
 if(argv["Defect"] == "Development") {
 lfSet("assignee", "x");
 lfDisable("assignee");
 } else {
 lfEnable("assignee");
 }
} else {
 //other functionality based on Defect field value for other screens
here....
}

Routines

Standard routines

The standard routines are listed in our . These routines are available to all our SIL-enabled plugins, namely:SIL space

JJUPIN (this plugin)
JJUPIN Agile - with the power of SIL and JJupin for the Agile ninjas
Blitz Actions - creates a non-transition screen. The companion of JJupin
KCF - Kepler Custom Fields - varia CF for your fun time (free)
DBCF - Database Custom Field - The only free plugin getting data from databases
Kontinuum - Our time-tracking solution

Routines added by JJupin

The following routines are JJupin specific.

Routine Description Syntax

lfHide Hides a field. lfHide(field)

lfShow Shows a field. lfShow(field)

lfDisable Disables a field. lfDisable(field)

lfEnable Enables a field. lfEnable(field)

lfHideAllExcept Hides all the given fields, panels and tabs except the ones given as
parameters.

lfHideAllExcept(fields_tabs_and_panels)

lfShowAll Shows the given fields, panels and tabs. lfShowAll(fields_tabs_and_panels)

lfShowFieldMessage Displays a message for the given field. lfShowFieldMessage(field, message,
messageClass)

lfHideFieldMessage Hides a message for the given field. lfHideFieldMessage(field)

For the technical minded
 There is just one routine registry, and that belongs to the katl-commons plugin. This makes sharing of the routines possible among
plugins !

https://confluence.kepler-rominfo.com/display/SIL/Routines
https://confluence.kepler-rominfo.com/display/JJUPA
https://confluence.kepler-rominfo.com/display/KBA/Kepler+Blitz+Actions+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation
https://confluence.kepler-rominfo.com/display/DBCF/Database+Custom+Field+Documentation
https://confluence.kepler-rominfo.com/display/KNT/Kontinuum+Documentation

lfGlobalMessage Displays a global message. lfGlobalMessage(message,
messageClass)

lfDialogMessage Displays a global message in a dialog box. lfDialogMessage(message,
messageClass)

lfSet Sets a field with the given values. lfSet(field, value)

lfWatch Attach listeners for the given events. lfWatch(field, relatedFields,
scriptPath[,javaScriptEvents])

lfExecuteJS Gives you the possibility to run your own javascript code. lfExecuteJS(jsFilePath)

lfRestrictSelectOptions Restricts the list of given options from the options of the field. lfRestrictSelectOptions(field, options)

lfRefreshScreen Performs a page reload. lfRefreshScreen()

lfRedirect Redirects to a given URL. lfRedirect(url)

lfInstantHook Executes the given SIL script, passing the screen values for
relatedFields as parameters to the script.

lfInstantHook(relatedFields, scriptPath)

lfAllowSelectOptions

Syntax

lfAllowSelectOptions(field, options[, triggerChange])

Description

Restricts the list of given options of the field to the list of options given as parameter.

Parameters

Parameter Type Required Description

field String Yes The field to restrict options for.

options String Yes The list of remaining options.

triggerChange Boolean No If set to true, triggers the change event on the field when routine is used.

Example

The following code example restricts anything but Major and Minor from the options of the priority standard field.

lfAllowSelectOptions("priority", {"Major", "Minor"}); //where field =
"priority" and options = "Major" and "Minor"

If you want to trigger the change event on the field when using lfAllowSelectOptions, you can use the optional triggerChange parameter set to
true:

lfAllowSelectOptions("customfield_10000", {"option1", "option2"}, true);
//where field = "customfield_10000" of type select list, options =
"option1" and "option2" and triggerChange = true

1.

Availability
This routine is available since

JJUPIN 3.0.2

lfDialogMessage

Syntax

lfDialogMessage(message, messageClass);

Description

Displays a global message in a dialog box.

Parameters

Parameter Type Required Description

message String Yes The message to display.

messageClass String Yes The message type.

The parameter can be:messageClass

ERROR: will display an error message.
WARNING: will display a warning message.
SUCCESS: will display a success message.
INFO: will display an info message.
HINT: will display a hint message.

Example

lfDialogMessage("This is a dialog message!", "WARNING");// where message =
"This is a dialog message!" and messageClass = "WARNING"

 The message will be displayed like in the image below.

lfDisable

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

Syntax

lfDisable(field)

Description

Disables the given field.

Parameters

Parameter Type Required Description

field String Yes Specifies the field to disable.

Example

Let's assume that the field issueType once set should not be changed by anyone, but by the admin user. To prevent other users from changing it,
being only able to view it, use lfDisable.

if(assignee != "admin") {
 lfDisable("issueType");
 }

Here's how the issue type looks like on the issue screen after calling lfDisable.

If a field is disabled and you want to enable it, use the next routine: .lfEnable

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfDisableTab

Syntax

lfDisableTab(field)

Description

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

Known Issues
When updating an issue the values for some of the disabled fields will not be saved. For example, you will not be able to update an
issue that has the field disabled.summary

If you update an issue that has a disabled, the custom field will not be anymore visible on the issue page because it wasText Field
saved with an empty value. This applies to most custom fields.

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN / 2.5.12+ 2.6.7+
katl-commons 2.5.16+ / 2.6.8+

Disables the given tab.

Parameters

Parameter Type Required Description

field String Yes Specifies the tab to disable.

Example

If the assignee is not admin, disable the Field Tab from the issue.

if(assignee != "admin") {
 lfDisableTab("Field Tab");
 }

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfEnable

Syntax

lfEnable(field)

Description

Enables the given field.

Parameters

Parameter Type Required Description

field String Yes Specifies the field to enable.

Example

If the field is disabled for all the users and the user admin, for example, should change the value, use lfEnable.

if(assignee == "admin") {
 lfEnable("issueType");
}

The image shows the enabled field and the value of the assignee field.

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfEnableTab

Syntax

lfEnableTab(field)

Description

Enables the given tab.

Parameters

Parameter Type Required Description

field String Yes Specifies the tab to enable.

Example

If the assignee is admin, enable the Field Tab from the issue.

if(assignee == "admin") {
 lfEnableTab("Field Tab");
 }

See Also:
Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfExecuteJS

Syntax

lfExecuteJS(jsFilePath);

Description

Gives you the possibility to run your own javascript code.

Parameters

Parameter Type Required Description

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN / 2.5.12+ 2.6.7+
katl-commons 2.5.16+ / 2.6.8+

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

jsFilePath String Yes The script source to run that contains your javascript code. The file is resolved relative to path.silprograms

Example

Let's first create a file which contains the following javascript code:

AJS.$('#summary-val').get(0).childNodes[0].nodeValue = "Executing my
javascript";
AJS.$('#descriptionmodule').hide();

Save it on the disk as hook.js and call the lfExecuteJS routine like in the code block below:

lfExecuteJS("hook.js"); // jsFilePath = "hook.js"

For the jsFilePath parameter you can either give the relative path (as in the example above) or the absolute path.

When calling this routine, the javascript code from hook.js is executed.

This will set the summary value on the issue page and will hide the description.

lfGlobalMessage

Syntax

lfGlobalMessage(message, messageClass);

Description

Displays a global message.

Important
The file designated by the jsFilePath patameter must contain only JavaScript code. Note that this code will be inlined, so DO NOT USE

!SINGLE LINE COMMENTS

var v = "a";
// let's show an alert
alert(v);

The above script will be evaluated to

var v = "a"; // let's show an alert alert(v);

So the alert() will never be called.

For the technical minded
The above routine gives you virtually all the power on JIRA UI. However, this may across versions of JIRA.NOT BE PORTABLE

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

Parameters

Parameter Type Required Description

message String Yes The message to display.

messageClass String Yes The message type.

The parameter can be:messageClass

ERROR: will display an error message.
WARNING: will display a warning message.
SUCCESS: will display a success message.
INFO: will display an info message.
HINT: will display a hint message.

Example

lfGlobalMessage("This is a global message!", "ERROR"); // where message =
"This is a global message!" and messageClass = "ERROR"

 The message will be displayed on the issue screen like in the image below:

lfHide

Syntax

lfHide(field)

Description

Hides the given field.

Parameters

Parameter Type Required Description

field String Yes Specifies the field to hide.

Example

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

If the assignee is not admin, hide the issue type field from the issue.

if(assignee != "admin") {
 lfHide("issueType");
 }

The image shows on the left side that the issue type is hidden and on the right side that the assignee is set to "test 1".

Now that the field is hidden, you can use to display it on the issue screen.lfShow

Additional Fields

In addition to the accepted by all Live Fields routines, lfHide can also handle:Supported fields and graphic elements

Element Field (to be used in routine)

Details Panel details_panel

People Panel people_panel

Dates Panel dates_panel

Timetracking Panel timetracking_panel

Activity Panel activity_panel

Comments Tab comments_tab

History Tab history_tab

Worklog Tab worklog_tab

Activity Tab activity_tab

All Tab all_tab

Add Comment addComment

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

Hiding fields and security
Hiding fields on the screen is not secure ! This is not a security solution, the field is present in HTML and can still be inspected via a
simple "Show page source".

This feature is only used to put some logic in the screen !

Availability
Feature available since JJupin 2.5.2.

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfHideAllExcept

Syntax

lfHideAllExcept(fields_tabs_and_panels)

Description

Hides all the given fields, panels and tabs except the ones given as parameters.

Parameters

Parameter Type Required Description

fields_tabs_and_panels String Yes Specifies the fields/panels/tabs to hide.

Example

lfHideAllExcept("details_panel", "issueType", "priority", "activity_panel",
"comments_tab", "Field Tab", "customfield_10101");

This is equivalent with:

lfShow("details_panel");
lfShow("issueType");
lfShow("activity_panel");
lfShow("comments_tab");
lfShowTab("Field Tab");
lfShow("customfield_10101");
//for all the other fields, tabs and panels: lfHide(element);

Additional Fields

In addition to the accepted by all Live Fields routines, lfHideAllExcept can also handle:Supported fields and graphic elements

Element Field (to be used in routine)

Details Panel details_panel

People Panel people_panel

Dates Panel dates_panel

1.
2.

Availability
This routine is available since

JJUPIN 3.0.7
katl-commons 3.0.7

Please note that this routine hides the elements that are not specified as parameters; so, if you want to show a field, don't forget toall
add the tab or panel it belongs to as a parameter.

Availability
Feature available since JJupin 3.0.7.

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

Timetracking Panel timetracking_panel

Activity Panel activity_panel

Comments Tab comments_tab

History Tab history_tab

Worklog Tab worklog_tab

Activity Tab activity_tab

All Tab all_tab

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfHideFieldMessage

Syntax

lfHideFieldMessage(field)

Description

Hides a message for the given field.

Parameters

Parameter Type Required Description

field String Yes The field to hide the message for.

Example

lfHideFieldMessage("assignee");//where field = "assignee"

lfHideTab

Syntax

lfHideTab(field)

Description

Hides the given tab.

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

1.
2.

Availability
This routine is available since

JJUPIN / 2.5.12+ 2.6.7+
katl-commons 2.5.16+ / 2.6.8+

Parameters

Parameter Type Required Description

field String Yes Specifies the tab to hide.

Example

If the assignee is not admin, hide the Field Tab from the issue.

if(assignee != "admin") {
 lfHideTab("Field Tab");
 }

Now that the field is hidden, you can use to display it on the issue screen.lfShowTab

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfInstantHook

 Syntax

lfInstantHook(relatedFields, scriptPath);

Description

Executes the given SIL script, passing the screen values for the specified relatedFields as parameters to the script.

This is especially useful in the create issue screen, where you don't have access to the issue standard variables.

Using an instant hook, you can access in the hook script the screen values for the desired fields as . argv[field]

Parameters

Parameter Type Required Description

relatedFields String Array Yes The dependent fields required for the given field.

scriptPath String Yes The script source to run when the event is triggered.

This routine only handles field tab and tabs defined by the user. If you want to hide the tabs from Activity panel, see routine.lfHide

Hiding fields and security
Hiding fields on the screen is not secure ! This is not a security solution, the field is present in HTML and can still be inspected via a
simple "Show page source".

This feature is only used to put some logic in the screen !

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 2.5.6 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)
katl-commons 2.5.8 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)

Example

lfInstantHook({"summary", "customfield_13706", "components"}, " hook.sil");

 For the scriptPath parameter you can either give the relative path (as in the example above), or the absolute path as: "C:/Program
Files/Atlassian/Application Data/JIRA/silprograms/hook.sil".

// hook.sil :
 if (contains(argv["summary"], "important")) {
 lfSet("priority", "Critical");
 lfShowFieldMessage("priority", "Priority changed", "INFO");
 }

Every time when the initial script is triggered, the hook.sil is executed. When the summary field contains the word “important”, priority field is set to
Critical and a message will be displayed for the priority field.

The first image shows the initial value of the priority for the current issue, the next one shows the value it is changed to, after executing the code
from hook.sil.

As we said before, the values from the relatedFields are accessed as . For multiple values fields like or argv[field] components affectedVersion
the value returned is in the following format: .s val1|val2|val3

lfRedirect

Syntax

lfRedirect(url);

Info
For more information, see .How 'Live Fields' work

1.
2.

Availability
This routine is available since

JJUPIN 2.5.6 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)
katl-commons 2.5.8 (for JIRA 5.x) and 2.6.1 (for JIRA 6.x)

Description

Redirects to the specified URL.

 If the url parameter represents a project or issue key, will redirect to its page, that is "<jira_base_url>/browse/<issue_or_project_key>".

Parameters

Parameter Type Required Description

url String Yes The redirect URL.

The url parameter can be:

a Jira (eg. "/secure/Dashboard.jspa")relative path
a (eg. "DEMO-1")issue key
a (eg. "DEMO")project key
a (eg. "http://www.full path URL google.com")

Example

Redirecting to our Kepler's products site:

lfRedirect("http://jira-plugins.kepler-rominfo.com");

Redirecting to Jira dashboard:

lfRedirect("/secure/Dashboard.jspa");

Redirecting to project "DEMO" page:

lfRedirect("DEMO");

Redirecting to issue "DEMO-1" page:

lfRedirect("DEMO-1");

lfRefreshScreen

Syntax

lfRefreshScreen();

Description

Performs a page reload.

Example

This routine cane be used for example to refresh information on view issue after performing an auto-transition when issue is viewed for the first
time:

1.
2.

Availability
This routine is available since

JJUPIN 2.5.5
katl-commons 2.5.8

if(argv["screen"] == "view" && status == "New") {
 autotransition("Move to Open", key);
 lfRefreshScreen();
}

Issue is created in status New. When first accessed it is auto-transitioned to status Open and page is refreshed by means of the lfRefreshScreen
routine to reflect the updated info.

lfRestrictSelectOptions

Syntax

lfRestrictSelectOptions(field, options);, [triggerChange]

Description

Restricts the list of given options from the options of the field.

Parameters

Parameter Type Required Description

field String Yes The field to restrict options for.

options String Yes The list of options to restrict.

triggerChange Boolean No If set to true, triggers the change event on the field when routine is used. Available since v. 2.5.6 for Jira 5.x and v.
2.6.1 for Jira 6.x.

Example

The following code example restricts Major and Minor from the options of the priority standard field.

lfRestrictSelectOptions("priority", {"Major", "Minor"}); //where field =
"priority" and options = "Major" and "Minor"

If you want to trigger the change event on the field when using lfRestrictSelectOptions, you can use the optional triggerChange parameter set to
true:

lfRestrictSelectOptions("customfield_10000", {"option1", "option2"}, true);

//where field = "customfield_10000" of type select list, options =
"option1" and "option2" and triggerChange = true

lfSet

1.
2.

Availability
This routine is available since

JJUPIN 2.5.2
katl-commons 2.5.3

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

Syntax

lfSet(field, value, [triggerChange]);

Description

Sets the field with the given values.

This sets the value . It does not set the value on the issue (setting it on the issue require direct access to the field)in the screen only

Parameters

Parameter Type Required Description

field String Yes The field to set the value for.

value String Yes The value to set. It can be a string value or an array with string values.

triggerChange Boolean No If set to true, triggers the change event when lfSet is used on a field. Available since v. 2.5.6 for Jira 5.x and v. 2.6.1 for
Jira 6.x.

Examples

The following code example sets the priority standard field as Major.

lfSet("priority", "Major"); // where field = "priority" and value = "Major"

As we said before, you can set multiple values to a field that can have multiple values. For example, let's set components field to comp1, comp2.

lfSet("components" , {"comp1", "comp2"});

If you try to set, for example, issue type field using an array like the code below, lfSet will take into account only the first value from the array. So,
this will set the issue type to "Task".

lfSet("issueType", {"Task", "Bug"});

If you want to trigger the change event on the field when using lfSet, you can use the optional triggerChange parameter set to true:

lfSet("customfield_10000", "updated val", true);

Warning
The value will not be saved in the database. To save value in the database you should do something like:

priority = "Major"; // this saves into the database the value

However, please make sure you're not on the create screen!

Warning
You can't set a field if the values are not available for the given field. For example, in order to set components field to comp1, comp2,
you have to make sure that comp1 and comp2 are valid components for that issue.

Known Issues
There are some fields, from the list provided in , that couldn’t set the value for. These fields are:Supported fields and graphic elements

Labels, on Edit, Transition, Create screens;

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

You can’t set fields that are not editable. For example, on the issue view screen you status or resolution fields.can’t set

lfShow

Syntax

lfShow(field)

Description

Shows the given field.

Parameters

Parameter Type Required Description

field String Yes Specifies the field to show.

Example

If the assignee is admin, show the issue type field on the issue.

if(assignee == "admin") {
 lfShow("issueType");
}

The image shows on the left side that the issue type is displayed on the issue screen and that the assignee is set to "admin".

Additional Fields

In addition to the accepted by all Live Fields routines, lfShow can also handle:Supported fields and graphic elements

Element Field (to be used in routine)

Details Panel details_panel

People Panel people_panel

Dates Panel dates_panel

Estimate (remaining estimate), on Transition screens;
Votes
Watchers

On the view screen, when you want to edit a field will be displayed the last value saved for that field.

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

Availability
Feature available since JJupin 2.5.2.

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

Timetracking Panel timetracking_panel

Activity Panel activity_panel

Comments Tab comments_tab

History Tab history_tab

Worklog Tab worklog_tab

All Tab all_tab

Add Comment addComment

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfShowAll

Syntax

lfShowAll(fields_tabs_and_panels)

Description

Shows the given fields, panels and tabs.

Parameters

Parameter Type Required Description

fields_tabs_and_panels String Yes Specifies the fields/panels/tabs to show.

Example

lfShowAll("issueType", "comments_tab", "activity_panel", "Field Tab");

This is equivalent with:

lfShow("issueType");
lfShow("comments_tab");
lfShow("activity_panel");
lfShowTab("Field Tab");

Additional Fields

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 3.0.7
katl-commons 3.0.7

Availability
Feature available since JJupin 3.0.7.

In addition to the accepted by all Live Fields routines, lfShowAll can also handle:Supported fields and graphic elements

Element Field (to be used in routine)

Details Panel details_panel

People Panel people_panel

Dates Panel dates_panel

Timetracking Panel timetracking_panel

Activity Panel activity_panel

Comments Tab comments_tab

History Tab history_tab

Worklog Tab worklog_tab

All Tab all_tab

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfShowFieldMessage

Syntax

lfShowFieldMessage(field, message, messageClass)

Description

Displays a message for the given field.

Parameters

Parameter Type Required Description

field String Yes Specifies the field for displaying the message.

message String Yes The message.

messageClass String Yes The message type.

The parameter can be:messageClass

: will display an error message.ERROR
: will display a warning message.WARNING
: will display a success message.SUCCESS

: will display an info message.INFO
: will display a hint message.HINT

Example

lfShowFieldMessage("assignee", "Assignee changed", "SUCCESS");

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

http://confluence.kepler-rominfo.com/display/JJUPIN/Supported+fields+and+graphic+elements

On the issue screen, the message will be displayed like in the image below:

On the edit screens the message will be displayed like in the image below:

lfShowTab

Syntax

lfShowTab(field)

Description

Shows the given tab.

Parameters

1.
2.

Availability
This routine is available since

JJUPIN / 2.5.12+ 2.6.7+
katl-commons 2.5.16+ / 2.6.8+

Parameter Type Required Description

field String Yes Specifies the tab to show.

Example

If the assignee is admin, show the Field Tab from the issue.

if(assignee == "admin") {
 lfShowTab("Field Tab");
 }

Now that the field is shown, you can use to hide it on the issue screen.lfHideTab

See Also:

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

lfWatch

Syntax

lfWatch(field, relatedFields, scriptPath[,javaScriptEvents]);

Description

Attach listeners for the events that you give as parameters in the function.

If you don’t give any event, it attaches listeners to “change” event (triggered when the issue is updated).

Every time the event is triggered, the SIL script from scriptPath parameter runs.

This SIL script receives the values for the relatedFields and you can use them as: .argv[field]

Parameters

Parameter Type Required Description

field String Yes The field to listen.

relatedFields Array

String

Yes The dependent fields required for the given field.

scriptPath String Yes The script source to run when the event is triggered.

javaScriptEvents Array No The events to listen to. It's any JavaScript event (check for references)this list

Error formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null

1.
2.

Availability
This routine is available since

JJUPIN 2.5
katl-commons 2.5

"change" event
 When using the "change" event on a "labels type" field (Fix Versions, Affected Versions, Labels, Components, etc.), the event will
never trigger when a label is deleted, but only when labels are added. We have noticed that for these fields the "focusin" event closely
matches the behavior expected for the "change" event.

https://developer.mozilla.org/en-US/docs/Mozilla_event_reference?redirectlocale=en-US&redirectslug=DOM%2FDOM_event_reference

Example

lfWatch("summary", {"summary", "customfield_13706","components"}, "
hook.sil", {"keyup"});
//where field = "summary";relatedFields = {"summary",
"customfield_13706","components"};scriptPath = " hook.sil";javaScriptEvents
= {"keyup"}

 For the scriptPath parameter you can either give the relative path (as in the example above), or the absolute path as: "C:/Program
Files/Atlassian/Application Data/JIRA/silprograms/hook.sil".

// hook.sil :
 if (contains(argv["summary"], "important")) {
 lfSet("priority", "Critical");
 lfShowFieldMessage("priority", "Priority changed", "INFO");
 }

Every time when the keyup event is triggered, the hook.sil is executed. When the summary field contains the word “important”, priority field is set
to Critical and a message will be displayed for the priority field.

The first image shows the initial value of the priority for the current issue, the next one shows the value it is changed to, after executing the code
from hook.sil.

As we said before, the values from the relatedFields are accessed as . For multiple values fields like or argv[field] components affectedVersion
the value returned is in the following format: .s val1|val2|val3

Additional Routines

Starting with JJupin 2.5.5, there are additional routines implemented into JJupin, concerning the display on SIL Runner. The UI has been
dramatically changed (we hope it's for the best!) and now you can put messages in your long-running scripts so you can watch the progress on
the runner.

Info
For more information, see .How 'Live Fields' work

runnerLog

runnerLog

Syntax

runnerLog(message)

or

runnerLog(message, percent, action) (Since JJUPIN 3.0.10)

Description

Puts the message 'message' on the console of a runner gadget. This is a special routine making sense only in JJupin/SIL Excel Reporting and
only for the runner. The use of it has no effect whatsoever besides for the runner.

Parameters

Parameter Type Required Description

message string Yes Specifies the message to be put on the runner console

percent number No Specifies the percent to be updated on the progress bar

action string No Specifies the action to be executed (so far, the only action

considered is - to initialize the progress bar;init_progressBar

everything else will be ignored)

Return type

string, can be always ignored

Example

Let's modify the example used :here

The scripts would look like below:

1.

Availability
This routine is available since

JJUPIN 2.5.5

Since JJUPIN 3.0.10, runnerLog routine can also render a progress bar by specifiing the percent we want to be set.

execution_script.sil

date start_date = gadget_getDateValue(argv, "Start Date");
string tanks = gadget_getSingleValue(argv, "Tanks");
string infantry = gadget_getSingleValue(argv, "Infantry");
string rockets = gadget_getMultiValues(argv, "Rockets");
runnerLog("Preparing to start a war...", 0, "init_progressBar");
runnerLog("The war will start at this date: " + start_date, 10);
runnerLog("Building tanks...");
runnerLog("Built " + tanks + " tanks.", 30);
runnerLog("Gathering infantry...");
runnerLog("Gathered " + infantry + " brave men.", 60);
runnerLog("Fueling rockets...");
runnerLog(rockets + " ready.", 90);
runnerLog("Dispatching orders...", 100);
return "Good job! The world is now at war!";

parameter_script.sil

gadget_createDatePicker("Start Date", currentDate(), true, "Choose a start
date");
gadget_createInput("Tanks", "500", true, "The number of tanks");
gadget_createInput("Infantry", "1600", true, "The number of tanks");
gadget_createCheckboxGroup("Rockets", {"A big one", "A lot of small ones"},
"", false, "Do you want to use rockets?");

In this case, using the new runnerLog routine, when the script execution is done, the runner will look like this:

Development

Making the life of the SIL developer bearable

This page is dedicated to you, the developer who needs to accomplish tasks using what we have done.

We plan to do some improvements on the interface, but while you are waiting for them, let us give you some hints.

Log Custom Field - How to use it

Many SIL messages are put directly into the JIRA log. This is becoming a problem, your transition does not get executed, and you would like to
know why.

So here it comes: if you want to display the log messages directly on the issue screen, use , provided by Log Custom Field Kepler Custom Field
plugin.

In order to see the logs which refers to the JJUPIN plugin, you have to install Kepler Custom Field and add a custom field of type Log Custom
Field. We'll assume JJUPIN is already installed.

Example

Let's create a sil script using the routine, which sets the value for a JIRA field on the current issue.lfSet

Suppose for some reason we forget to write the value this field should be set to and use the code block displayed below:

lfSet("customfield_11000");//which is plain wrong, we expect 2 parameters
here

But we expect that this should change the value for a field of type version picker, identified in JIRA by the id: customfield_11000, with the value:
v1 and when we open the issue we see that the value of it is the old one.

So now we know something is wrong and we should look in the log file to see what happened, because we don't know what the cause is.

But we have the log custom field on the screen and we know that the log messages will appear as the value for this like in the image below.

To search the messages, please scroll down and look for the messages which refers to the routine to be executed.

The log custom field indicates that the script was scheduled to be executed but encountered an error at line 1 while executing it. And the advice is
to examine the exception stack trace from the log file, but we think that

most probably the syntax is not correct, we search for lfSet routine in the documentation and we discover that we were right about it, so we
change it to:

For more information about how to configure this custom field and how to test it, please see the documentation from .here

It's just easier sometimes to use this field, than to search the log file provided by JIRA.

The log on the screen contains main / important messages (not everything !) . However, it may reduce the development timeONLY
quite dramatically !

https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Log+Custom+Field

lfSet("customfield_11000", {"v1"});//which is correct

Now we go back to the issue and the value for the version picker field is set to v1 like in the image below and in the log custom field the messages
does not contain any error regarding the usage of this routine:

This is only an example of how log custom field is used with JJUPIN.

SIL Programming Warnings

Introduction

What you do when the script you are running doesn't have the expected result? Your first thought is to look in the Log files. But where?

Since JJupin 2.5 and katl-commons 2.5 we came in your help with a powerful tool that is useful when developing new scripts or debugging old
ones.

How to use it

What you have to do? First of all you have to enable this feature. To do this you have to go to Administration -> Add-ons -> SIL Configuration.

How it works

Once you enabled it let's see how it works.

Every time a SIL Script is executed a warning report is created that shows the warnings that were found during the script execution.

Assume we have the following script.

Info
For more information about JJUPIN Configuration, see .Administration Page

function f(string s){
 description = s;
}
f(1);

Running this script will generate the following WARN logs in the Log file.

This is the Warning Report that displays, in the first row, the number and the type of the problems that were found during the script
execution.Then, it displays a detailed report of each problem found saying the line of the script that generated the problem and the problem
message.

In our example was found only one problem of type STYLE, at line 5 that warn us about the parameter type we call the f function with.The routine
was expected on the first position a String parameter but we gave it a Number.

There are three types of problems that may occur.

STYLE- a style problem

SERIOUS - a medium problem

FATAL - plain error

What does this script? Sets the description with the value 1.

Look what happens on the issue after the script is executed.

The description is set to 1.

Let's see another example.

Info
You can also have the possibility to view the log messages on the issue screen, using Log Custom Field, provided by Kepler Custom

 plugin.Field

Important
 Using SIL Programming Warning will not affect your SIL script execution.

https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation
https://confluence.kepler-rominfo.com/display/KCF/Kepler+Custom+Fields+Documentation

function f(string s){
 description = s;
}
f(1);
number a;
a += 2;

The execution of this script will generate the following warnings:

Calling SIL Scripts from Remote Systems

Problem
Solution 1 - REST

Step 1 - Create the Script
Step 2 - Add the Script to the Gadget
Step 3 - Identifying the Script ID
Step 4 - Calling the Script

Solution 2 - SOAP
Step 1 - Authentication
Step 2 - Calling the Script

Problem

Complex integrations with external systems might require your JIRA instance to react somehow to external events. And there's no better way to
express "somehow" than using a SIL Script.

Solution 1 - REST

The first solution is to use the same REST service that the SIL Runner Gadget uses to call scripts. This requires that the script is first added to the
gadget. We will also use a special user that the external system will use to authenticate against JIRA, and we will restrict the Script from the
gadget to this specific user.

Step 1 - Create the Script

We will create the script using the SIL Manager from Administration -> Add-ons -> SIL Manager. Select the folder where you want the file to be
created and click .New->New file

For the purpose of this guide, we will use the following script:

Deprecation
As of JJUPIN 2.5.5 this method of calling SIL scripts is . Use the insteadeprecated and no longer supported Common REST Service
d.

1.

Required plugins
You will need the following JIRA plugins:

JJUPIN

Level: ADVANCED

https://confluence.kepler-rominfo.com/display/SIL/Common+REST+Service
https://confluence.kepler-rominfo.com/display/JJUPIN

print(argv[0]);
return "Hello World!";

Step 2 - Add the Script to the Gadget

For the purpose of this guide, the special user I mentioned earlier will be the generic "admin".

Step 3 - Identifying the Script ID

Using your favorite browser's Developer tools, inspect the select list from the tab and look for the newly created script. Since weRunner
restricted it to the special user, we'll have to be logged in as "admin" to see it.

You should find something like this:

<select name="silid" id="silid" class="select6">
 <option value="10001">test</option>
</select>

You guessed it! The ID is 10001.

Alternative
You can also find the script ID by analyzing the table from the JIRA database.krunnablesils

1.

Step 4 - Calling the Script

Calling the script is done using a HTTP GET to the REST resource behind the SIL Runner Gadget.

In the URL, we need to specify 2 parameters:

silid - the script ID
silparams - the comma-separated list of additional parameters

To actually call the script, we will use this URL

<your_base_url>/rest/keplerrominfo/jjupin/latest/rungadget/run?silid=10001
&silparams=abc

This will return a JSON object containing 2 important parameters:

key
starthour

Example return value

{"key": "1","starthour": "1363342987392","message": "Sil script runnig.
Please wait..."}

The script is now running. This pair uniquely identifies your running script. You'll need to make another request to get the results, using the values
you received in the first response.

<your_base_url>/rest/keplerrominfo/jjupin/latest/rungadget/verifyResponse?
key=1&starthour=1363342987392

Now you can have one of two types of responses:

if the contains the and parameters (they will have the same values as the ones that were sent), this means thatresponse key starthour
your script is still running and you'll have to do the call again and again until you find response 2.

Example return value

{"key": "1","starthour": "1363342987392","message": "Sil script runnig.
Please wait..."}

2. if the response contains the parameter, your script is done and the value of the parameter specifies the list of returned valuesreturns
from the script.

Example return value

{"returns": ["Hello World!"]}

That's all there is to it using the REST resource!

Authentication
Don't forget to use basic authentication with your request.

Solution 2 - SOAP

The JJupin exposes a web service that can be used to call remote scripts. That's what the routine actually calls. The WSDL is available at call <y
. You will need to enable the web service by going to Administration -> Kepler General Parameters -> JJupinour_base_url>/rpc/soap/sil?wsdl

and setting WSEnabled to true.

The web service provides a "execute" method which takes 3 parameters

in0 - String - authentication token
in1 - String - the path of the file containing the script
in2 - String [] - parameters to be sent to the script

Step 1 - Authentication

To authenticate your request, you can either use the to generate an authentication token and pass it to the execute method, orJiraSoapService
use or to authenticate your request. Note that when using basic authentication or OAuth, you will still need to provideBasic Authentication OAuth
a non-null, non-empty bogus token.

Step 2 - Calling the Script

All that's left to do now is to call the web service.

Additional Documentation

Before using JJupin check out the for a better grasp of SIL usage and capabilities.Simple Issue Language documentation

Here you will find some useful tutorials that will help you get started with JJupin.

If you would like to share your idea, please us.notify

Known problems (and their resolutions)

We strive for perfection. However some things really do not depend on us. For some we consider there's room for improvement but we didn't have
the time to achieve them.

So here's a list of common problems (we will update the page with each finding):

No Affected
Functionality

Problem Explanations and the Resolution

1 listeners,
service

Upgrading to a superiorkatl-commons
version, but the behavior is the same on
listeners and services.

There are classloader issues on JIRA, disabling the plugin does not clear completely
the classes used by the listeners and services.

This is somehow normal, since the listeners and services are loaded in the "superior"
layer, not in the plugin OSGI framework. Since this

is a JIRA behavior, we cannot do too much about it.

 1: Resolution disable-enable the listeners and services This may or may not work, it.
depends on the version of JIRA.

Resolution 2: cold restart of JIRA (this for sure works).

1.

Required plugins
You will need the following JIRA plugins:

JJUPIN

Level: ADVANCED

https://confluence.kepler-rominfo.com/display/SIL/call
http://docs.atlassian.com/rpc-jira-plugin/latest/com/atlassian/jira/rpc/soap/JiraSoapService.html
https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-+Basic+Authentication
https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-+OAuth+authentication
http://confluence.kepler-rominfo.com/display/SIL/Home
https://confluence.kepler-rominfo.com/display/TR
https://confluence.kepler-rominfo.com/display/JJUPIN

2 configuration
pages

Upgraded JJUPIN, but configuration pages are
looking odd

We are providing , so when you upgrade a plugin,backward compatibility only
make sure you upgrade the dependencies as well.

This happens when you install for instance, JJUPIN v2.5.5 directly from jar file (not
.obr file) but you preserve katl-commons v.2.5.7.

The version of katl-commons is unable to provide the services JJUPIN requests,
therefore there are errors in the logs and pages are looking odd

Resolution: upgrade katl-commons to the latest level offered by the corresponding
dependent plugin / JIRA version (for our example, minimal 2.5.8)

3 plugin
installation

Plugin fails to (re)enable after it was disabled,
or some components remain disabled (UPM
shows "x of y modules enabled" where x < y).

Resolution: Re-install the plugin. If you're uploading the plugin file from your local
disk, uninstalling the previous version is not required. Just upload over the existing
version. If you're installing the plugin from the marketplace, you'll need to uninstall
first since there's no option to "Install" plugins that are already installed on your JIRA
instance.

4 plugin
installation

OsgiContainerException: Cannot
start plugin

caused by:

org.osgi.framework.BundleException:
Unresolved constraint in bundle

 Install correct katl-commons or warden, as explained in the exception.Resolution:
You need to provide the correct dependency. Even if we provide the .obr archive,
sometimes, in some containers, this is not enough and a reinstall is needed.

5 checking
scripts

A number of messages are logged to ERROR,
but the Check button says the check is OK.

Affects version 3.0. The messages are wrongfully logged to ERROR and will be
downgraded to DEBUG in a future version.

Previous versions documentation

If you have an older version of JJupin here is the documentation for . and 2.6JJupin 2.5

License & Pricing

Info

This product requires a license, which can either be provided as the file, or as the key generated via the .Kepler jjupin.lic Atlassian Marketplace
You can find more about licenses .here

You can find pricing details on or visiting our site: .Atlassian Marketplace Kepler Products

Contact

Software Development and Services

Florin Haszler
Phone: + 4021 233 10 80
Email: fhaszler@kepler-rominfo.com

http://www.kepler-rominfo.com

JIRA Plugins Support

Please see .Getting Support

Backup and restore

At Restore: install first the plugins

https://confluence.kepler-rominfo.com/pages/createpage.action?spaceKey=JJUPIN&title=JJupin+Documentation+%28v+2.5.x+and+v+2.6.x%29
https://plugins.atlassian.com/plugins/com.keplerrominfo.jira.plugins.jjupin
https://marketplace.atlassian.com
http://www.kepler-rominfo.com/pages/solutions/jira-plugins/jjupin
http://www.kepler-rominfo.com/
https://confluence.kepler-rominfo.com/display/EULA/Getting+Support

1.
2.

Mundane operations as backup and restore may pose some problems to the unsuspecting JIRA administrator. Since all the Kepler plugins create
some tables in the JIRA schema - we created this mechanism long before Active Objects was introduced into Atlassian's framework - you need
to take some precautions at restore.

Specifically, at restore you need to create the tables used by our plugins. You do not need to copy schema from the previous JIRA or fill it with
data, you just need to (enabling the plugins would create the needed tables).simply install the plugins into JIRA before restoring

JJUPIN has two dependencies:

katl-commons (core support)
warden (used for licensing)

For reference, these are the tables created by each add-on

Plugin Tables

JJUPIN krunnablesils

krssecurity

klistenersils

jjlf_config

jjlf_project

jjlf_category

katl-commons kplugins

kpluginscfg

kissuestate

kstatevalues

warden -

	JJupin Documentation
	Introduction
	What's new in JJUPIN 3.0

	Requirements
	Installation & Configuration
	Installation
	Installation via Atlassian Universal Plugin Manager
	Manual Install
	Installing a New License

	Install notes for JIRA 7
	What should I do if I installed an incompatible version?

	Administration Page
	Advanced Config
	SMS Provider Configuration

	SIL Manager
	SIL Services & Scheduler
	SIL Listener
	SIL Custom Field Descriptors
	Live Fields Configuration

	SIL Configuration
	Mail Configuration
	Remote Systems
	REST Remote Systems

	SQL Configuration
	LDAP Configuration
	Configuring a SIL JIRA Service
	Configure JIRA Logging
	Licensing
	Uninstall
	Manual Uninstall
	Uninstall via Atlassian Universal Plugin Manager

	User guide
	Writing Validators, Postfunctions and Conditions
	Transition View
	Workflow View
	Workflow Viewer
	SIL Runner Gadget
	Parameters in SIL Runner Gadget

	Live Fields
	How 'Live Fields' work
	Supported fields and graphic elements
	Accessing the current screen
	Routines
	lfAllowSelectOptions
	lfDialogMessage
	lfDisable
	lfDisableTab
	lfEnable
	lfEnableTab
	lfExecuteJS
	lfGlobalMessage
	lfHide
	lfHideAllExcept
	lfHideFieldMessage
	lfHideTab
	lfInstantHook
	lfRedirect
	lfRefreshScreen
	lfRestrictSelectOptions
	lfSet
	lfShow
	lfShowAll
	lfShowFieldMessage
	lfShowTab
	lfWatch

	Additional Routines
	runnerLog

	Development
	SIL Programming Warnings
	Calling SIL Scripts from Remote Systems

	Additional Documentation
	Known problems (and their resolutions)
	Previous versions documentation
	License & Pricing
	Contact
	Backup and restore

